Sign in with
Sign up | Sign in

Results: Tom's Storage Bench v1.0

OCZ Vertex 450 256 GB SSD Review: Can We Call It Vector Jr.?
By

Storage Bench v1.0 (Background Info)

Our Storage Bench incorporates all of the I/O from a trace recorded over two weeks. The process of replaying this sequence to capture performance gives us a bunch of numbers that aren't really intuitive at first glance. Most idle time gets expunged, leaving only the time that each benchmarked drive was actually busy working on host commands. So, by taking the ratio of that busy time and the the amount of data exchanged during the trace, we arrive at an average data rate (in MB/s) metric we can use to compare drives.

It's not quite a perfect system. The original trace captures the TRIM command in transit, but since the trace is played on a drive without a file system, TRIM wouldn't work even if it were sent during the trace replay (which, sadly, it isn't). Still, trace testing is a great way to capture periods of actual storage activity, a great companion to synthetic testing like Iometer.

Incompressible Data and Storage Bench v1.0

Also worth noting is the fact that our trace testing pushes incompressible data through the system's buffers to the drive getting benchmarked. So, when the trace replay plays back write activity, it's writing largely incompressible data. If we run our storage bench on a SandForce-based SSD, we can monitor the SMART attributes for a bit more insight.

Mushkin Chronos Deluxe 120 GB
SMART Attributes
RAW Value Increase
#242 Host Reads (in GB)
84 GB
#241 Host Writes (in GB)
142 GB
#233 Compressed NAND Writes (in GB)
149 GB


Host reads are greatly outstripped by host writes to be sure. That's all baked into the trace. But with SandForce's inline deduplication/compression, you'd expect that the amount of information written to flash would be less than the host writes (unless the data is mostly incompressible, of course). For every 1 GB the host asked to be written, Mushkin's drive is forced to write 1.05 GB.

If our trace replay was just writing easy-to-compress zeros out of the buffer, we'd see writes to NAND as a fraction of host writes. This puts the tested drives on a more equal footing, regardless of the controller's ability to compress data on the fly.

Average Data Rate

The Storage Bench trace generates more than 140 GB worth of writes during testing. Obviously, this tends to penalize drives smaller than 180 GB and reward those with more than 256 GB of capacity.

The Vertex 450 is scorching fast in our trace replay, coming in just behind OCZ's Vector. This is a real-worldish case where OCZ's crafty firmware optimization pays dividends. With only 150 GB worth of writes in the trace, both SSDs have the ability to service I/O in their performance mode, yielding dramatically higher average data rates. Consequently, service times drop in the process.

Service Times and Standard Deviation

There is a wealth of information we can collect with Tom's Storage Bench above and beyond the average data rate. Mean (average) service times show what responsiveness is like on an average I/O during the trace. It would be difficult to plot the 10 million I/Os that make up our test, so looking at the average time to service an I/O makes more sense. We can also plot the standard deviation against mean service time. That way, drives with quicker and more consistent service plot toward the origin (lower numbers are better here).

The higher-end Vector services trace I/O more quickly than any other drive, with the exception of the Vertex 450. Though the new SSD is slower, the difference is miniscule, resulting in statistical data which places the Vertex 450 ever so slightly behind its stablemate.

React To This Article