Skip to main content

Thermal Paste Round-up: 85 Products Tested

Special Case: Cooling Your Graphics Card

If you want to know more about improving your graphics card's thermal performance, check out How To: Optimizing Your Graphics Card's Cooling.

Lose The Goop! Start With A Proper Cleaning

Various methods are used to apply thermal paste to graphics cards. Often, paste is applied directly to the heat sink by the cooler manufacturer (via screen printing, pad printing, or using soft pads off a transfer film), or a certain portion of liquid paste is applied later during the marriage of the heat sink to the board. However, almost all manufacturers overdo it with thermal paste, and in the case of our test subject, the result is messy.

Image 1 of 2

Image 2 of 2

Apparently, thermal paste was applied in such abundance that even half of the package was filled as well. While this makes no sense as far as temperatures are concerned, at least it isn't dangerous. Simple silicone-based pastes are generally non-conductive, and thus there is no chance of causing a short-circuit.

Image 1 of 2

Image 2 of 2

Nevertheless, a thorough clean-up is advisable. As a first step, we recommend using a soft cloth to remove all residue that can easily be wiped off without additional (chemical) aid. When cleaning the heat sink, pay attention to the grating, as remnants of the old thermal paste are easily left behind in the various grooves. This is also true for the surface of flattened heat pipes.

It is important to ensure that those surfaces are thoroughly cleaned because mixing different pastes can be extremely counterproductive. Specialized shops sell cleaning kits for this purpose, but even isopropyl alcohol (2-propanol) will do the trick. It's available on Amazon and at various pharmacies, and usually sold for about two or three dollars per sixteen ounces. It is advisable not to use methylated spirits. And totally unsuitable for the task at hand are acetone cleaners, nitro-cellulose thinners, and nail polish remover. While the latter may also be based on 2-propanol, it often contains other unfavorable additives as well.

Be careful when you're cleaning the GPU package. Avoid scraping or scratching. Even forceful rubbing with a soft cloth can damage the fragile hardware if a certain amount of pressure is exceeded. Whatever remnants are unwilling to part freely are better left alone. Only the GPU itself needs to be polished to a high gloss.

Perfect Application Of The Correct Thermal Paste

What makes a paste "correct," anyway? The Internet is full of dubious tests, many of which contradict each other. In fact, any benchmark that ignores the change in fan speeds after modification, or doesn't look at the temperatures of other on-board components are more or less useless.

Except for water cooling, which doesn't need a fan, control mechanisms like AMD's PowerTune and Nvidia's GPU Boost ensure that the GPU's thermal behavior significantly affects fan speed, voltage regulation, and of course clock rate. So, even if the measured temperatures appear the same, the card may suddenly be holding a higher boost frequency for a significantly longer time, the fans may rotate slower, or both. Furthermore, a lower GPU temperature, and thus a reduction of fan activity, can result in a higher thermal load on other components.

The minimum burn-in time necessary for a new application of paste to reach its peak performance is another issue that is rarely taken into account. We have thus allowed all our thermal pastes to "burn in" over a total operating time of 24 hours each. Of course, this prolongs our measurement window, but the extra effort is worthwhile.

Since we generally prefer the "blob" method, and like to tighten the GPU heat sink's four screws crosswise, the choice of an appropriate paste actually is the most important task. To recap, a lentil-sized blob is more than enough, and it is absolutely okay if a little bit of paste leaks at the sides once the screws are tightened. It's better to be generous than to create empty spaces with no paste at all. Once your burn-in period is completed, it might be a good idea to check whether the four screws need to be re-tightened.

In addition to the paste's basic properties, such as high thermal conductivity (low thermal resistance), its consistency also plays an important role. In the hands of a professional, thermal pastes with high viscosity (like diamond pastes) can be a perfect weapon to battle excess heat. However, for less experienced modders, they're often unpredictable and difficult to handle. To achieve the perfect result with a highly viscous paste, you have to preheat the paste, warm up the heat sink to somewhere between 60 and 70°C, apply the right amount of paste to the sink, and then screw it all back together before the product cools down.

Image 1 of 2

Image 2 of 2

These two images show that the above pictured blob was sufficient, and hardly any of the product got spilled. Furthermore, the image shows a thin and uninterrupted layer of thermal paste across the GPU, which goes to show there's no reason to fumble with a spatula.

Now it's time to talk money. Not everything that is expensive and/or boldly advertised is suitable for the job. When testing under similar conditions, and by taking fan activity into account, the results reveal relatively small differences. This disqualifies many products due to an unfavorable cost-benefit ratio.

MORE: Best CPU Cooling

MORE: How To Choose A CPU Cooler

MORE: All Cooling Content

  • AndrewJacksonZA
    *heavy breathing*
    I love these kinds of articles and in-depth super tests!! Thank you so much for all your time, effort and hard work, I appreciate it. I'm sure that I'm going to enjoy reading it.

    Um, do you guys still have a single page or "printable" view please?
  • Yuka
    Oh, amazing article. I love it a lot.

    Maybe it's because I've used Artic Silver 5 for so many years, but for me it's the best all-rounder compound there is. Plus it's very cheap. I like it more than the MX-2 and MX-4 compound siblings people usually recommends. But I have to say, the "diamond" compounds are indeed better it seems. I had my doubts, but no more with these tests.

  • InvalidError
    Long story short: apart from esoteric TIMs, all pastes are practically as good as any other for typical uses when applied correctly. That really shouldn't surprise anyone as all pastes rely on the same principle of various particle sizes in silicon oil suspension getting crushed together.
  • DarkSable
    Hang on, I'm sorry.

    Also, very cheap silicone-based solutions like Arctic MX-2 and MX-4, despite being easy to apply and affordable, aren't worth the trouble they cause later as they deteriorate.

    I work with MX-4 almost exclusively. Yeah, it's not $30 a tube, but it's also not "very cheap," are you kidding me? "Very cheap," is the Elmer's glue you sniffed as a kid, repackaged as thermal paste.

    I use MX4 specifically because it doesn't have a burn in period and because it lasts FOREVER.

    No, it doesn't deteriorate. I've seen reports a decade after the fact showing less than three degrees celsius difference from when it was first applied.

    So. Either you're biased because of ignorance, or both Artic's warranty and every long term test done before this has been lying. Gosh, lemme think which is more likely...

    Now, is something like MX4 the best thermal paste out there? Of course not. But it IS way better than a lot of the market, super easy to apply and maintenance-free, and very reliable. If you're going to be a snob about your thermal pastes, at least be accurate about it.
  • zippyzion
    Well, I didn't see that result coming. They are almost all the same. So, why even bother picking? Just get the cheapest stuff from a reputable name. That's a little disappointing that doubling your money gains you a degree or two, at best.
  • grimfox
    Within the article you talk about the considerations for GPU backplate for augmented cooling. Do you plan to do a review/article for products involved in that? I would be interested to know which thermal pads or shims or pastes you are using to augment GPU cooling. And to see a comparison of different products. I recently replaced a laptop GPU and redid the pads for that. The installation did involve a learning curve and finding products was not straight forward.
  • JamesSneed
    Nice job on this article. Do more of this It helps the enthusiast community.

    Looking at your data Thermal grizzly Kryonaut wins as the best non-metal TIM except in low mounting pressure situations. it doesn't seem to matter as long as you have one of the decent pastes but its obvious there are a few to avoid like the Coolplast20 or Amasan T12 for example.
  • FormatC
    I'm using TIM since over 15 years, not only for Home PC's, but also in the industry. The major problem of this MX-4 are the long Burn-In time to get a better performance and the fast dry-out issue. As hotter a CPU or GPU works, as worse this grease performs (and is drying out). I does a lot of long-term runs with different products and especially this older products (not only from Arctic) were showing this typical behavior.

    If you prefer MX-4, why not? Use it. But please accept, that a test of different products over 4 years can show at the end a completely different picture. :)

    I get a lot of hardware (mostly VGA) with MX2- or MX-4 as replacement of the original TIM from other reviewers in rotation. And I have every time to replace this replacement with better (or original) products to get the original performance back. MX-2 on a VGA card is pure pain. Simply try one time another, better products and you will be surprised.

    I have to take, what's in Germany on the market. All pastes were retail and not sponsored samples from the manufacturer. It was my idea to do this under real conditions. But I think it is possible to organize some stuff also from the US or Asian market.
  • JamesSneed
    With Ryzen and more so Thredripper I wonder if those will impact application methods due to the multiple dies under the heat spreader? Seems you would want to make sure you have the area the dies are covered with TIM and that area is spread out more with those CPU's.
  • AndrewJacksonZA
    A great article, thank you! :-)