Skip to main content

Thermaltake Toughpower SFX 600W PSU Review

The highest-end member of Thermaltake's Toughpower SFX Gold line is on our test bench today. It offers Gold efficiency, modular cabling, and a semi-passive fan mode. Thanks to its 600 W capacity, you can easily build a powerful system with it.

Load Regulation, Hold-Up Time And Inrush Current

To learn more about our PSU tests and methodology, please check out How We Test Power Supply Units. 

Primary Rails And 5VSB Load Regulation

Load Regulation testing is detailed here.

Image 1 of 8

Image 2 of 8

Image 3 of 8

Image 4 of 8

Image 5 of 8

Image 6 of 8

Image 7 of 8

Image 8 of 8

Hold-Up Time

Our hold-up time tests are described in detail here.

Image 1 of 7

Image 2 of 7

Image 3 of 7

Image 4 of 7

Image 5 of 7

Image 6 of 7

Image 7 of 7

Measured hold-up time is among the lowest we have ever seen. And to make matters worse, the power-good signal drops while the rails are already out of spec. This is unacceptable, especially for a PSU that costs $120. Enhance needs to increase the bulk capacitor's to enable a decent hold-up time.

Inrush Current

For details on our inrush current testing, please click here.

Image 1 of 2

Image 2 of 2

The lack of a bypass relay, which allows the NTC thermistor to cool down quickly, and a lackluster thermistor choice inevitably lead to high inrush currents.

Load Regulation And Efficiency Measurements

Our first set of tests reveals the stability of the voltage rails and the PSU's efficiency. The applied load equals (approximately) 10 to 110 percent of the STP-0600F-G's maximum load in increments of 10 percentage points.

We conducted two additional tests. During the first, we stressed the two minor rails (5V and 3.3V) with a high load, while the load at +12V was only 0.1 A. This test reveals whether a PSU is Haswell-ready or not. In the second test, we determined the maximum load the +12V rail could handle with minimal load on the minor rails. 

Test #12V5V3.3V5VSBDC/AC (Watts)EfficiencyFan SpeedFan NoiseTemps (In/Out)PF/AC Volts
13.160A1.995A1.984A0.991A59.7480.63%2245 RPM34.9 dB(A)39.34 °C0.963
12.080V5.010V3.323V5.026V74.0944.06 °C115.1V
27.366A3.000A2.988A1.195A119.7588.04%2300 RPM36.5 dB(A)40.03 °C0.976
12.065V4.998V3.312V5.009V136.0245.04 °C115.1V
311.937A3.510A3.513A1.400A179.8489.35%2360 RPM37.2 dB(A)40.58 °C0.970
12.043V4.986V3.299V4.995V201.2746.12 °C115.1V
416.519A4.022A4.009A1.604A239.7889.78%2470 RPM38.3 dB(A)41.25 °C0.981
12.022V4.975V3.291V4.981V267.0847.88 °C115.2V
520.768A5.032A5.030A1.810A299.7189.76%2660 RPM40.8 dB(A)41.56 °C0.988
12.002V4.963V3.278V4.968V333.8949.48 °C115.2V
625.037A6.059A6.057A2.017A359.7289.53%2790 RPM42.4 dB(A)42.54 °C0.991
11.980V4.952V3.267V4.950V401.7750.77 °C115.2V
729.319A7.085A7.095A2.225A419.5989.11%2820 RPM43.1 dB(A)42.81 °C0.993
11.956V4.938V3.254V4.935V470.8751.21 °C115.1V
833.616A8.124A8.141A2.436A479.6488.57%2950 RPM46.9 dB(A)43.77 °C0.994
11.936V4.927V3.242V4.918V541.5453.29 °C115.1V
938.368A8.652A8.692A2.442A539.7187.99%3025 RPM48.4 dB(A)45.42 °C0.995
11.914V4.914V3.232V4.908V613.4057.15 °C115.2V
1043.083A9.177A9.220A2.550A599.5287.31%3025 RPM48.4 dB(A)46.01 °C0.996
11.892V4.904V3.220V4.894V686.6360.01 °C115.2V
1148.219A9.199A9.248A2.554A659.4184.53%3025 RPM48.4 dB(A)46.45 °C0.996
11.867V4.894V3.211V4.886V780.1161.12 °C115.2V
CL10.100A11.016A11.004A0.000A92.2984.11%3025 RPM48.4 dB(A)44.38 °C0.988
12.084V4.978V3.294V5.024V109.7255.30 °C115.2V
CL249.948A1.003A1.003A1.001A606.8487.99%3025 RPM48.4 dB(A)44.61 °C0.996
11.886V4.929V3.249V4.950V689.6757.69 °C115.2V

Load regulation is mediocre on all rails; the STP-0600F-G doesn't stand a chance compared to the numbers that Corsair's SF600 achieves. The higher ambient temperature inside of our hot-box doesn't allow Thermaltake's passive mode to engage, and the fan profile is aggressive when it gets this hot. Thankfully, the small fan isn't particularly loud compared to other 80 mm fans, so up to the 40% load test, we record lower than 40 dB(A) results. As for efficiency, the PSU satisfies the 80 PLUS Gold requirements under 20% and 100% loads, and comes close to the corresponding threshold under mid-load. Given very high operating temperatures, we can easily give it a pass.

Take a closer look at the table above and you'll see efficiency drop dramatically under 110% load. Clearly, the STP-0600F-G is hugely stressed by 660 W of load. Aside from low efficiency, it also makes a high-pitched noise and ripple on its rails is way above the limits. Thermaltake claims a 720 W peak load, though that doesn't look to be 100% true. You may be able to apply such a load level, but expect terrible ripple suppression and very low efficiency. So, whether you want to overload it for short periods is your choice. We have to warn you, though, that you'd also be applying huge stress to your other hardware, since high ripple shortens the life of components like electrolytic caps. It also significantly affects the performance of voltage regulation circuits, jeopardizing stability.

Aris Mpitziopoulos
Aris Mpitziopoulos is a Contributing Editor at Tom's Hardware US, covering PSUs.