Computer History 101: The Development Of The PC

From Tubes To Transistors

From UNIVAC to the latest desktop PCs, computer evolution has moved very rapidly. The first-generation computers were known for using vacuum tubes in their construction. The generation to follow would use the much smaller and more efficient transistor.

From Tubes...

Any modern digital computer is largely a collection of electronic switches. These switches are used to represent and control the routing of data elements called binary digits (or bits).Because of the on-or-off nature of the binary information and signal routing the computer uses, an efficient electronic switch was required. The first electronic computers used vacuum tubes as switches, and although the tubes worked, they had many problems.

The three main components of a basic triode vacuum tube.The three main components of a basic triode vacuum tube.

The type of tube used in early computers was called a triode and was invented by Lee De Forest in 1906. It consists of a cathode and a plate, separated by a control grid, suspended in a glass vacuum tube. The cathode is heated by a red-hot electric filament, which causes it to emit electrons that are attracted to the plate. The control grid in the middle can control this flow of electrons. By making it negative, you cause the electrons to be repelled back to the cathode; by making it positive, you cause them to be attracted toward the plate. Thus, by controlling the grid current, you can control the on/off output of the plate.

Unfortunately, the tube was inefficient as a switch. It consumed a great deal of electrical power and gave off enormous heat—a significant problem in the earlier systems. Primarily because of the heat they generated, tubes were notoriously unreliable—in larger systems, one failed every couple of hours or so.

...To Transistors

The invention of the transistor was one of the most important developments leading to the personal computer revolution.The transistor was invented in 1947 and announced in 1948 by Bell Laboratory engineers John Bardeen and Walter Brattain. Bell associate William Shockley invented the junction transistor a few months later, and all three jointly shared the Nobel Prize in Physics in 1956 for inventing the transistor. The transistor, which essentially functions as a solid-state electronic switch, replaced the less-suitable vacuum tube. Because the transistor was so much smaller and consumed significantly less power, a computer system built with transistors was also much smaller, faster, and more efficient than a computer system built with vacuum tubes.

The conversion from tubes to transistors began the trend toward miniaturization that continues to this day. Today’s small laptop PC (or netbook, if you prefer) and even Tablet PC systems, which run on batteries, have more computing power than many earlier systems that filled rooms and consumed huge amounts of electrical power.

Although there have been many designs for transistors over the years, the transistors used in modern computers are normally Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). MOSFETs are made from layers of materials deposited on a silicon substrate. Some of the layers contain silicon with certain impurities added by a process called doping or ion bombardment, whereas other layers include silicon dioxide (which acts as an insulator), polysilicon (which acts as an electrode), and metal to act as the wires to connect the transistor to other components. The composition and arrangement of the different types of doped silicon allow them to act both as a conductor or an insulator, which is why silicon is called a semiconductor.

MOSFETs can be constructed as either NMOS or PMOS types, based on the arrangement of doped silicon used. Silicon doped with boron is called P-type (positive) because it lacks electrons, whereas silicon doped with phosphorus is called N-type (negative) because it has an excess of free electrons.

MOSFETs have three connections, called the source, gate, and drain. An NMOS transistor is made by using N-type silicon for the source and drain, with P-type silicon placed in between. The gate is positioned above the P-type silicon, separating the source and drain, and is separated from the P-type silicon by an insulating layer of silicon dioxide. Normally there is no current flow between N-type and P-type silicon, thus preventing electron flow between the source and drain. When a positive voltage is placed on the gate, the gate electrode creates a field that attracts electrons to the P-type silicon between the source and drain. That in turn changes that area to behave as if it were N-type silicon, creating a path for current to flow and turning the transistor “on.”

Cutaway view of an NMOS transistor.Cutaway view of an NMOS transistor.

A PMOS transistor works in a similar but opposite fashion. P-type silicon is used for the source and drain, with N-type silicon positioned between them. When a negative voltage is placed on the gate, the gate electrode creates a field that repels electrons from the N-type silicon between the source and drain. That in turn changes that area to behave as if it were P-type silicon, creating a path for current to flow and turning the transistor “on.”

When both NMOS and PMOS field-effect transistors are combined in a complementary arrangement, power is used only when the transistors are switching, making dense, low-power circuit designs possible. Because of this, virtually all modern processors are designed using CMOS (Complementary Metal Oxide Semiconductor) technology.

Compared to a tube, a transistor is much more efficient as a switch and can be miniaturized to microscopic scale. Since the transistor was invented, engineers have strived to make it smaller and smaller. In 2003, NEC researchers unveiled a silicon transistor only 5 nanometers (billionths of a meter) in size. Other technology, such as Graphene and carbon nanotubes, are being explored to produce even smaller transistors, down to the molecular or even atomic scale. In 2008, British researchers unveiled a Graphene-based transistor only 1 atom thick and 10 atoms (1 nm) across, and in 2010, IBM researchers created Graphene transistors switching at a rate of 100 gigahertz, thus paving the way for future chips denser and faster than possible with silicon-based designs.

Integrated Circuits: The Next Generation

The third generation of modern computers is known for using integrated circuits instead of individual transistors. Jack Kilby at Texas Instruments and Robert Noyce at Fairchild are both credited with having invented the integrated circuit (IC) in 1958 and 1959. An IC is a semiconductor circuit that contains more than one component on the same base (or substrate material), which are usually interconnected without wires. The first prototype IC constructed by Kilby at TI in 1958 contained only one transistor, several resistors, and a capacitor on a single slab of germanium, and it featured fine gold “flying wires” to interconnect them. However, because the flying wires had to be individually attached, this type of design was not practical to manufacture. By comparison, Noyce patented the “planar” IC design in 1959, where all the components are diffused in or etched on a silicon base, including a layer of aluminum metal interconnects. In 1960, Fairchild constructed the first planar IC, consisting of a flip-flop circuit with four transistors and five resistors on a circular die only about 20 mm2 in size. By comparison, the Intel Core i7 quad-core processor incorporates 731 million transistors (and numerous other components) on a single 263 mm2 die!

This thread is closed for comments
    Your comment
  • raclimja

    i still have my pentium 2 gathering dust on my closet

    improvements in technology is AMAZING
  • grooveboss
    ^ dweeb alert
  • Pyree
    The article contains no post-PC era nonsense! Just the way it should be.
  • dogman_1234
    I liked it. Love history; and the history of computerized technology. Can't wait to see the next 50 years.
  • mayankleoboy1
    just one question:

    why this article? in the whole wide range of PC, why this?
    you could have done the second part to the Antiliasing article.
  • cangelini
    mayankleoboy1just one question: why this article? in the whole wide range of PC, why this?you could have done the second part to the Antiliasing article.

    That's still on its way. It's very data-intensive and Don has been plugging away at it.
  • Chewie
    No mention of the Commodore in any of its forms? :(
  • SteelCity1981
    2006: Microsoft releases the long-awaited Windows Vista to business users. The PC OEM and consumer market releases would follow in early 2007:

    It should really read.

    2006: Microsoft releases the long-awaited Windows Vista to business users. The PC OEM and consumer market releases would follow in early 2007 and the vast majority of people quickly downgraded back to Windows XP:

  • madsbs
    Pics or it didn't happen!

    Where are the illustrations for this rather interesting piece?
  • jj463rd
    One thing that I disliked about the Timeline of Computer Advancements was leaving out Douglas Englebart and the Mother of All Demos in 1968(if you don't know about him you know very little about computer history )and giving accolades instead to Xerox.
  • Firehead2k
    I also missed the Commodore line of pcs
  • Mark Heath
    Nice read, reminded me to read up a bit more history on Apple, I knew jobs left for a while, but only found out today that he's apparently taken LSD and went Hindu after a trip to India. Yes, *apparently*, go look it up :)
  • molo9000
    he system’s $8975 price placed it out of the mainstream personal computer marketplace

    That's a mild understatement. In 1975 you could buy a brand new V8 powered Ford Mustang for $4000.

    The move to a PC-based architecture is without a doubt the smartest move Apple has made in years—besides reducing Apple’s component costs, it allows Macs to finally perform on par with PCs.

    Eh? Apple had to move to Intel because PowerPC was going downhill in 2006, but a there was a time when PowerPC chips were faster than Intel chips.

    I would say it is a safe bet that PC-compatible systems will continue to dominate the personal computer marketplace for the foreseeable future.

    That's a bold statement considering that the next version of Windows is going to be ARM compatible.
    The personal computer isn't going anywhere, but we might see the end of x86 dominance soon.
  • Krnt
    No Fusion and no ARM? WTF?!
  • nforce4max
    Where is Xerox and their contributions? They made the GUI and the mouse as well ethernet networking so it isn't like they were vaporware.
  • leandrodafontoura
    This article is misleading a little bit. Apple computers, before the change to Intel processors, used IBM processors, wich were significantly superior to Intel best solution
  • kilo_17
    So does this mean without IBM, the PC would be way different than what it is today?
  • ta152h
    Quite a few mistakes, but the most glaring is the overstatement with regards to the Apple II. What standard did it set? Expansion slots were on other machines, although IBM certainly saw this on the Apple. Of course, you didn't have the problems where certain card wouldn't work in certain slots (except in VERY rare cases), whereas Apple was much more rigid. The weird video where you couldn't put certain colors next to other colors were certainly never copied. The 6502 was a dead end, and Apple's next computer went to the 68K. The design where the keyboard was part of the computer was not copied by IBM,and in any case had been predated.

    Also, it was NOT a huge standard. The TRS-80 was at least as important in 1977 and the next few years, and was the best selling computer before the IBM PC came out. Also, don't forget Atari, which was also out there with the Atari 400 and Atari 800, and had very powerful video acceleration technology.

    It's not the Apple II wasn't selling, but it wasn't a predominate standard as stated, and had very strong competition. It was basically overpriced junk, with a slow, very annoying processor (which is the basis for ARM's instruction set), annoying video modes, weird floppy disk technology, and a price excessive for what the machine was.

    Also, the Pentium II was not basically a Pentium Pro with MMX. It had much more important changes (in retrospect, since MMX didn't matter much). For one, the Pentium Pro ran 16-bit code very poorly, and it was obscenely expensive because of the L2 cache on the processor package. They slowed down the L2 cache with external chips (for the Klamath, Deschutes, and Katmai), but doubled the L1 cache. This cut costs dramatically. Also, the Pentium II was able to run 16-bit code better than the Pentium for the first time.
  • jc5427
    No mention of Unix/Linux?
  • jcknouse
    They still make that book?

    I think I have the 2nd Ed of that book at home, with ISA ports listed in it.

    A free copy would mean I have one that's up-to-date. lolz
  • TeraMedia
    My father still has a working MITS altair. The disk drives are a bit flakey, and I don't think the punch tape drive has been used since the 70s, but it packs a full 64KB sRAM, and has switches on the front by which you can actually toggle in the machine code if you want. Working in 64 KB of program and data space is challenging to say the least. It runs a variant of BASIC written by William Gates, whoever that is.
  • cangelini
    madsbsPics or it didn't happen!Where are the illustrations for this rather interesting piece?

    Alas, we weren't able to add artwork to the story as it appears in the book; believe me, I wanted to as well :)
  • JohnA
    TA152HQuite a few mistakes....

    Yeah, I was going to add similar. One thing they also forgot was LIM, Lotus/Intel/Microsoft. Before MS put out the Office suit, and IBM headed down it's lonesome OS/2 trail (wow, not even a mention of OS/2 ???), Lotus played a role in the early evolution.

    What made the PC standard was open hardware, AND software the masses could use.
  • HistoryBuff44
    Im curious, why no mention of Konrad Zuse's Z1 machine he built in the late 30's and early 40's?