China's Quantum Satellite Program Designed to Transmit Unhackable Information

satellites
(Image credit: Shutterstock)

Achieving higher-orbit quantum communications remains an objective for all institutional and private players with enough expertise and funding to consider it. And while quantum computing and the capability to communicate in unbreakable, unsnoopable channels is of interest to most entities, only China has manifested a low-orbit satellite — Micius — that enables two-way research and quantum information traffic between space and the surface. This was back in 2016 — the US doesn’t have a publicly-known, operational Quantum Key Distribution satellite system, and Europe’s is only expected to launch next year.

Not one to rest on its laurels, China is nonetheless aiming to take QKD (Quantum Key Distribution) communication to new heights, and is plotting out the ways to break its current, 310-mile (~500 km) geostationary orbit limit towards an impressive 6,200 mile (10,000 km) radius.

Of course, satellites sitting at higher orbits could cover larger portions of the surface and additional ground stations, enabling a wider and more resilient quantum network coverage. But distance isn’t exactly helpful in increasing the survival of information-carrying qubits, and high-orbit satellites will require improved on-board micro-vibration suppression technology so spacecraft can send precise optical or laser signals. Fortunately, photons within the 1550nm band (used in our day-to-day fiber optics communications) can be leveraged for this, facilitating a number of implementation and adaptation steps.

Current satellite-based quantum communications leverages the entanglement susceptibility of photons — individual light particles that can be quantized — towards using them as information carriers. Much like the binary system of information, a single photon can be polarized in one way or another — in being able to discern more than one state, they can be encoded into information.

It’s clear that China is looking to capitalize on the years of experience it has low-orbit QKD system, and plans to increase its resiliency and redundancy. Considering the limited throughput of current QKD systems, however, it’ll likely be decades before these applications become pervasive — and even more before they’re used for communications in non-critical systems.

 

Francisco Pires
Freelance News Writer

Francisco Pires is a freelance news writer for Tom's Hardware with a soft side for quantum computing.