Skip to main content

Extreme Overclocking: 10 Ryzen CPUs Under LN2

Conclusion

While life isn't always black and white, you could say that overclocking Ryzen CPUs using LN2 is definitely cut-and-dried. On one hand, you have some processors that handle cryogenic temperatures and high voltages without a problem. They can reboot without issue at -196°C, allowing you to continue your pursuit of higher clock rates. In other words, they're every overclocker's dream.

But some Ryzen processors are stubborn to the point of being nightmarish. Having to go from -196°C to -20°C after every crash is not pleasurable. The resulting consumption of nitrogen, gas, and patience is downright frustrating.

AMD's Selection Methodology

Enthusiasts in the habit of trying multiple CPUs and keeping only the best won't be bothered. They'll toss stubborn samples aside for someone else to worry about. But if you're on a budget and only have one processor to experiment with, the luck of the draw is particularly unforgiving right now.

Strangely enough, while we expected the processors with the fewest cores to overclock best, the opposite proved true. With only 10 samples on-hand, it's hard to draw statistically reliable conclusions. According to our tests, though, the Ryzen 5 CPUs couldn't stand up to the clock rates achieved by our Ryzen 7s. This is most certainly due to AMD's binning process. Lower-performing chips have some cores deactivated and their clock rates reduced. The best dies go into the Ryzen 7 1800X model.

Thus, your best bet for a good overclock under LN2 is AMD's Ryzen 7 1800X. In our air cooling tests, one Ryzen 7 1700 was able to keep up with the 1800Xes.

Ultra-Solid Processors

To end on a positive note, we want to emphasize that, despite tens of hours testing with liquid nitrogen cooling, using high voltages at cryogenic temperatures, and building/tearing down our test platform (with water everywhere), not a single component was damaged. Ryzen appears solid, despite its relative youth. And when you stumble across a gem of a sample, it's a pleasure to overclock.


MORE: Best CPUs


MORE: How To Overclock AMD Ryzen CPUs


MORE: De-Lidding and Overclocking Core i7-7700K


MORE: CPU Overclocking Guide: How (and Why) to Tweak Your Processor

  • InvalidError
    It isn't surprising that the highest-end CPUs have the highest and least troublesome overclocks as that's what chip binning is for - the best dies go to the premium SKUs first, lower tiers get what is left over.
    Reply
  • Yuka
    19937674 said:
    It isn't surprising that the highest-end CPUs have the highest and least troublesome overclocks as that's what chip binning is for - the best dies go to the premium SKUs first, lower tiers get what is left over.

    Even more, it's very interesting since it gives some credibility that AMD is not binning due to defects, but electrical properties, hence, making the rumour mill of being able to unlock some 4C and 6C to higher core counts not that far-fetched.

    Cheers!
    Reply
  • Wisecracker
    Très bon!
    (hope I used this correctly)

    Just wondering ... would it be considered a 'faux pas' (or, an insult to AMD) to release the batch numbers?

    Reply
  • theyeti87
    19937697 said:
    19937674 said:
    It isn't surprising that the highest-end CPUs have the highest and least troublesome overclocks as that's what chip binning is for - the best dies go to the premium SKUs first, lower tiers get what is left over.

    Even more, it's very interesting since it gives some credibility that AMD is not binning due to defects, but electrical properties, hence, making the rumour mill of being able to unlock some 4C and 6C to higher core counts not that far-fetched.

    Cheers!

    Wasn't that a similar case with the Phenom X4, X3, and X2's? Or were those 3's and 2's disabled cores due to defect?
    Reply
  • Yuka
    19937706 said:
    19937697 said:
    19937674 said:
    It isn't surprising that the highest-end CPUs have the highest and least troublesome overclocks as that's what chip binning is for - the best dies go to the premium SKUs first, lower tiers get what is left over.

    Even more, it's very interesting since it gives some credibility that AMD is not binning due to defects, but electrical properties, hence, making the rumour mill of being able to unlock some 4C and 6C to higher core counts not that far-fetched.

    Cheers!

    Wasn't that a similar case with the Phenom X4, X3, and X2's? Or were those 3's and 2's disabled cores due to defect?

    They were a mix of both. If you were lucky (and could track down some of the batches) you were able to unlock the CPU with little worry, but there were defective ones that when unlocked, would not work. I came across both myself.

    To be honest, I just catalog it as "interesting", because I will pay the difference to always get the full working version, but I do know there's people out there that like gambling and can track batch numbers :P

    Cheers!
    Reply
  • InvalidError
    19937697 said:
    Even more, it's very interesting since it gives some credibility that AMD is not binning due to defects, but electrical properties
    The relatively low defect rate has been a given since launch IMO: half of each CPU core is L2 cache and half of the CCX die area is the L3, so you have a 50% chance that defects within a CCX will land in L3. If the defect rate had been significant, cache defects would have forced AMD to launch models with 8MB of L3 long before the 1400.
    Reply
  • Yuka
    19937880 said:
    19937697 said:
    Even more, it's very interesting since it gives some credibility that AMD is not binning due to defects, but electrical properties
    The relatively low defect rate has been a given since launch IMO: half of each CPU core is L2 cache and half of the CCX die area is the L3, so you have a 50% chance that defects within a CCX will land in L3. If the defect rate had been significant, cache defects would have forced AMD to launch models with 8MB of L3 long before the 1400.

    True. It's just nice to have more non-validated statistical-irrelevant proof! Haha.

    Cheers! :P
    Reply
  • Gregory_3
    This is all kind of cute, but the real market success will be played out in conventional liquid cooled and air cooled environments. Nobody is going be running high end software with condensation dripping all over.
    Reply
  • InvalidError
    19938043 said:
    Nobody is going be running high end software with condensation dripping all over.
    There wouldn't be condensation issues if OCers used the nitrogen gas boiling out of the pot to displace air and the moisture it contains around the motherboard to keep it off of it. Instead of circulating the boil-off around the motherboard though, LN2 OCers use fans to suck it away, drawing more moisture-ladden air in the area.
    Reply
  • gasaraki
    "It isn't surprising that the highest-end CPUs have the highest and least troublesome overclocks as that's what chip binning is for - the best dies go to the premium SKUs first, lower tiers get what is left over."

    While it might not be surprising, it shows the immaturity of the Ryzen processors in that the build quality is not the same between different CPUs or even CCXes and binning is what they do for the lower cored versions. If your build process was mature ALL your chips would come out mostly the same and "awesome" then at that point your forced to just shutdown cores to make the lower cored processors.
    Reply