# When Will Ray Tracing Replace Rasterization?

## The Basic Concepts

The basic idea of ray tracing is extremely simple: for each pixel of the display, the rendering engine casts a ray that propagates in a straight line until it intersects an element of the scene being rendered. This initial intersection is used to determine the color of the pixel as a function of the intersected element's surface.

But this alone is not enough to achieve realistic rendering. For that, the lighting of the pixel also needs to be determined, which is done by shooting secondary rays (as opposed to the primary rays that determine the visibility of the different objects making up the scene). To calculate a scene's lighting effects, secondary rays are emitted toward the different light sources. If these rays are blocked by an object, then the object in question is in a shadow that the light source under consideration casts. Otherwise, that light source would affect its lighting instead. The sum of all the secondary rays that have reached a light source determines the quantity of light falling on our scene element.

But that's still not the whole picture. In order to achieve even more realistic rendering, the indices of reflection and refraction of the material have to be taken into consideration. In other words, the amount of light reflected at the point of impact with the primary ray and the amount of light that passes through the material have to be accounted for. Here again, rays are emitted to determine the final color of the pixel.

In summary, there are several types of rays. Primary rays are used to determine visibility and are like the Z-buffer used in rasterization. Then, there are secondary rays, which consist of:

• reflection rays
• refraction rays

The classic ray tracing algorithm

This ray tracing algorithm is the result of the work of Turner Whitted, the researcher who invented it 30 years ago. Until then, the ray tracers of the period worked only with primary rays. Thus, the improvements made by Whitted were a giant step toward realism in scene rendering.

If you have some physics courses under your belt, you will have noticed that the way ray tracing operates is exactly the inverse of what happens in the real world. Unlike the belief widely held in the Middle Ages, our eyes don't send out rays, but instead they receive the rays of light from light sources that have been reflected off the various objects by which we're surrounded. That's how the first ray tracing algorithm worked, in fact.

But the main disadvantage of the technique was that it was extremely computationally-expensive. For each light source, thousands of rays had to be cast, many of which had no influence on the scene being generated (because they didn't intersect the image plane). Recently-developed ray tracing algorithms are an optimization of the basic algorithm and are referred to as backwards ray tracing, since the rays propagate in the opposite direction from what happens in reality.

The original algorithm, which made too many unnecessary calculations

Summary
"deep tech" articles accompanying product launches tend inevitably to follow the lines of press kits, PR slides, etc.
Articles like this, while take longer to research, are exactly that - they are researched rather than detailing "company X implemented techniques Y and Z in their new product, which works this way, benefits performance that way and is really cool.". it gives an independent, comprehensive view of the subject, and gives the reader real understanding in the field.
• Greed? You give an inch they take a mile? Very pessimistic conclusion although it helps drive the industry so hard to really complain.
• I'm definitely the kind of person that would prefer to lose some performance in exchange for elegance and perfection. The eye can tell when something is done cheaply in a render. I've made this argument [something most people don't even begin to grasp] that quite often we find computationally cheap methods of doing something in a game, and after time it seems to me that we've got a 400 horsepower muscle car that, on close inspection, is held together with duct tape and dreams. I'd much rather have a V6 sedan that's spotless and responds properly.

Okay, well in real life, the Half Life 2 buggy would be a lot cooler to drive around than a Jetta, but you get the analogy.
• Great article!
• i still like the simplicity of ray tracing and how close it is to physics/science. it is just how it works, bounce light to everything.

there are a lot of diminishing returns i can see in the future, some are, how complex can rasterization can get? what is the diminishing returns for image resolution especially on the desktop/living room?
ray tracing has a lot of room for optimization.

for years to come, indeed, raster is good for what is possible in hardware. look further ahead,more than 5 years, we'll have hardware fast enough and efficient algorithm for ray tracing. not to mention the big cpu companies, amd & intel, who will push this and earn everyones money.
"deep tech" articles accompanying product launches tend inevitably to follow the lines of press kits, PR slides, etc.
Articles like this, while take longer to research, are exactly that - they are researched rather than detailing "company X implemented techniques Y and Z in their new product, which works this way, benefits performance that way and is really cool.". it gives an independent, comprehensive view of the subject, and gives the reader real understanding in the field.
• The ray-tracing code on the business card was way cool. I was hoping (real-time)ray-tracing and photo-realistic rendering will come with DX11 and GPGPU offloading - this seems completely unrealistic.
I still never read of any dedicated ray-tracing hardware, at any price. It seems the better we understand ray-tracing and it's limitations, the more cloudy the future becomes.
• Nice article. Seems to be fairly accurate.
• Ray tracing will inevtiably replace rasterization. It will just flat out look better to the human perception, when in motion, than pure rasterization, and that is all that is required.

• Hopefully GPGPU (OpenCL)
will make raytracing possible.
(Together with a huge number of processing cores per graphic card and an advanced raytracing algorithm.)
• nice article.
I wouldn't mind having just a little bit more technical depth, but I'd be glad to seem more like this on Tom's.
if nvidia wants to survive it must adapt and evolve. It's silly trying to persuade people about how bad raytracing is just because you're a dinosaur and don't want to acquire new know-how. Nevertheless even if nvidia is not willing to do it, there are already others who are filling the gaps.
• Ok, so now with some hefty computer cluster you can render one frame in 6 hours, so it will take one day to render 4 frames. 24 frames per/s are needed, so it takes 6 days to render one second of moving picture...
Yep we will see real time ray trasing in games in something like 20 years? (Douple the speed of computer in each year) It takes something like 15 years to calculate one frame in 0.6 second (for movie company computers) and 4-5 year more to make it 24 frames per second... If the mores law keep on kicking. For home you can expect speed like that in 5 more years? lets say 10. So summa summarum we have high guality tray trasing games 30 years from now!
Well ofcourse Pixar has much higher need for guality, so less is needed for gaming.
In any way nice article! And in real life some sort of tray trasing can be seen sooner, but photorealistic computing is still far far away... pity I will be in pension or dead before I see it...
• Lets face it. What do we have today> Current cards using rasterization playing much more lifelike games on much larger monitors. The closer we get to "itll play Crysis", the more the boundaries move, and puts it just that much closer to Ray Tracing.
Great job Fredi, and tho some will deny what its going to take to get RT RT, you painted it as well as Ive seen. As for more in depth,if the article was too finely explained, the overall picture may have been lost, as seen by some comments.
I cant find the link I posted awhile back in the forums about Lexus? having a full time raytracer for their designing, but its still slow, and requires over 320 cores which are designed for this kind of work, not just a simple x86 cpu, so yea, we are aways off before anything real happens.
Once again, excellent article
• Wouldn't real time ray tracing need many many more CPU cores than the four barely used today, and would get rid of the graphics card? If so, its too big a leap for anytime soon.
• I won't go quite so far out as Hannibal... keep in mind that Pixar is largely these days rendering for imax-quality images (~12,000 x 8700.) It may indeed take 20 to 30 years before you're playing Crysis on a desktop monitor that's that dense. In the mean time, you will see raytracing come to desktop games (so long as people keep asking for it) more in a 1920 x 1080 version with low quality settings at first for your higher framerates.
• More or less what I figured. Ray tracing has its benifits, but I was always a bit concerned at the data structures and how they were designed. The fact is, regardless of how much better it works, if its too hard to manage to code without clear and visable benifits, then devs won't use it.

Rasterization is still the better method. Besides, a decade ago, Doom3 proved you could do dynamic shadows in rasterization, which skeptics thought was too costly to perform (or downright impossible). Reflections will eventually follow.
• Awesome article. Really enjoyed reading it. However, based on current technology, well the type that us regular joe's can afford, I do not see this as being very economical for companies. That and based on my limited understanding; the human eye can only see, or should i say distinguish, so much as it is to begin with (color hues and whatnot)that it would not make a whole lot of sense to go to far with this as at a cetain point it would not make a difference to our senses anyway.

Add on top of that the processing power needed to reach such levels at this time is just not economically smart. In time when average people can afford a system capable of rendering such games then it would make sense but only to the point in which our senses can actually distinguish whats on the screen.
• Lighting effects makes all the difference. If the lighting and shadows are not convincing to the eye isn't "fooled" and the scene isn't convincing.
Think of Film Noir and the very effective use of darkness an shadows. What you don't see contrasts what you do.
Remember the brighter the light source the DARKER the shadow.
If you are in bright sunlight (Fallout3) the shadows casts by objects and characters should be BLACK to you. This is because your iris is closed because of the sunlight. IT seem that something so simple is hard to pull off with rasterized rendering.
• Perhaps one day, but not anytime soon. Despite what Intel says, Larrabee won't do it either. I don't expect to see them ray tracing Crysis anytime soon.
• The thing is that the standard you hold an image to is also dependent on your standards. I work with physically accurate rendering programs on a nearly daily basis for the purpose of creating architectural visualizations. To my eyes, rasterization looks like crap. Raytracing is an improvement, but still hardly ideal. People aren't used to the quality of raytracing, let alone metropolis light transport, so they're happy with rasterization. If ray tracing were the standard, rasterized images would be considered to be subpar.