Is 80 PLUS Broken? How To Make It A More Trustworthy Certification
80 PLUS is hands-down the most popular efficiency certification program among PSU manufacturers nowadays. In today's article, we're digging into the organization's flaws, which are critical in some areas, and how we can improve upon them.
Standby Power Consumption
Even when you turn your PC off, it continues consuming energy. In order to totally shut it down, you have to either pull the power cord or switch off the PSU using its power switch.
The power a PSU needs in standby is called vampire or phantom power, since it's consumed without the power supply doing anything. This power is mostly lost on the PSU's 5VSB circuit. That's why all modern units are equipped with standby PWM controllers (and/or specially-designed PFC controllers) able to minimize phantom power requirements.
In 2010, the European Union released a guideline on Energy Related Products (ErP Lot 6), which states that every electronic device should have below 1W power consumption in standby mode. In 2013, this limit was further reduced to 0.5W. The same year, the EU also released the ErP Lot 3 guideline for computers and servers, mandating that all PSUs should consume less than 5W when the load is equal or less than 2.75W at 5VSB with universal power input (100V~240V).
In our experience thus far, vampire power is lower with 115V input than 230V. It's the opposite for our 5VSB efficiency results, meaning that with 115V input, the 5VSB rail's efficiency is higher. Usually, higher voltage levels enable lower energy losses, since fewer amps are needed at 230V compared to 115V. And as current drops, energy losses do as well (P= I2 x R).
MORE: How We Test Power Supplies
MORE: How To Choose A PSU
Stay On the Cutting Edge: Get the Tom's Hardware Newsletter
Get Tom's Hardware's best news and in-depth reviews, straight to your inbox.
Current page: Standby Power Consumption
Prev Page Low Ambient Temperature Testing Next Page 5VSB EfficiencyAris Mpitziopoulos is a contributing editor at Tom's Hardware, covering PSUs.
Westinghouse's eVinci micro nuclear reactor for data centers delivers 5 megawatts of power for eight years without refueling — microreactors could power next-gen AI data centers
Seasonic power supplies debut with OptiSink design to improve cooling — Opti Sink touts an 8X increase in thermal conductivity
-
loki1944 I could not possibly care less how efficient a PSU is; what I care about is how reliable it is.Reply -
Sakkura I think you're being unreasonable when it comes to how many load levels to test. A review site like Tom's only looks at a handful of PSUs every year. Ecova runs the 80 Plus test on the majority of PSUs on the market. That necessitates simplified testing.Reply
It could still be updated/improved, but it's never going to be as in-depth as the very few reviews a site like Tom's does. -
waltsmith I can't agree. Until 80 PLUS became common blue screen errors due to dirty ass power being delivered to components was the norm. Even so called premium name brand PSUs suffered from this problem. Diagnosing a malfunctioning computer often involved trying up to 3 or 4 PSUs to see if it fixed the problem before even looking for anything else wrong. People that have been into computer hardware for a long time will know exactly what I'm talking about. We've come a long way, but progress is what it's all about. I applaud this article!Reply -
Chettone At least is something. Those that dont even have 80 PLUS can fry your PC.Reply
Personally I go for trusted manufacturers (based on user and tech reviews). Seasonic for example gives like 5 year warranty, that says a lot about quality. -
laststop311 EVGA makes a really good PSU the G1. for 80-90 dollars you get a 650 watt G1 with a 10 year warranty. Nice to see a company tly standing behind a product. And it's 80+ gold more than good enoughReply -
chumly @aris Why don't you send emails out to johnnyguru, guru3d, techpowerup, realhardtechx, etc, and create a standard you guys can all agree on? It's just a matter of doing it. All you guys are doing independent testing anyways. I don't think it will hurt your time budget to add a few emails and trying to get some people on board. Hell, you might make some money in the long run. Standardized testing methodology for computer hardware. Set minimums for what should be necessary for proper operation, and what is considered a failure. Then start to force the hardware companies to conform. You have a huge, reputable website behind you, you can accomplish whatever you want to. I'm interested in this as well, as probably are a lot of people.Reply -
PRabahy What would it take for you guys to start a "Toms hardware certified" division? I would pay extra for a powersupply that had that logo and I knew had passed the list of tests that you mentioned in this article.Reply -
I It's almost as though you are inventing things we don't need or care about. Ideals about that next step, and next step, and so on, come at ever increasing burdens to manufacturers, shoppers, and build costs.Reply
Like LOKI1944, I care more about reliability. To some extent the two go hand in hand, in that a more efficient design produces less heat which has a direct relation to how quickly the two (arguably) shorted lived components, capacitors and fans last, and yet when a design has greater complexity to arrive at higher efficiency, there's more to go wrong, and reverse engineering for repair becomes much more of a hassle.
Yes I repair PSU that are worth the bother, though that's starting to split hairs since most worth the bother don't fail in the first place unless they saw a power surge that fried the switching transistors.
The other problem with complexity is in cutting corners to arrive at attractive price points. "Most" PCs don't need much more than median quality 300W PSU, but those are not very common these days at retail opposed to OEM systems, so you end up paying more to get quality, and end up with a higher wattage than you need for all but your gaming system. Increase complexity and we're paying that much more still.
Anyway, PSU efficiency doesn't matter as much to me as it did in the past, like around the Athlon XP era where many motherboards had HALT disabled, and your PC was a space heater even sitting around idle. Ironically the build I'm typing on right now, uses more power for the big 4K monitor than the PC itself uses.
Maybe we need an efficiency rating system for monitor PSU! -
Aris_Mp A proper series of tests besides efficiency can also evaluate (in a degree at least) a PSU's reliability. For example any of the firecracker PSUs that is on the market today won't survive under full load, at an increased operating temperature.Reply
Moreover, efficiency testing doesn't mean that you cannot observe other parameters as well in a PSU's operation, like ripple for example. -
Aris_Mp @CHUMLY I know very well the guy at TPU so this isn't a problem :) The actual problem is that every reviewer has its own methodology and equipment so it cannot be a standard for all of us.Reply
In order to make a standard which can be followed by all reviewers you have to make sure that each of them uses exactly the same equipment and methodology. And not all reviewers can afford Chroma setups and super-expensive power meters, since most of them do this for hobby and actually don't have any serious profit.
It would be boring also if the same methodology applied to all PSU (and not only) reviewers. It is nice to have variations according to my opinion, since this way a reviewer can covers areas that the other doesn't.