Intel graphics update: Ray-tracing the way to go for game developers?

Interview – Lots of graphics tech tradeshows are on the calendar for the coming weeks - Siggraph 2008 in Anaheim, IDF Fall in San Francisco, Games Convention in Leipzig and Nvision 08 in San Jose. Intel will play a big role in three of those shows and with Larrabee out and Nehalem almost ready for showtime, we felt it was time to get an update on Intel’s ray-tracing efforts.

There is no better person at Intel to chat about ray-tracing than Daniel Pohl, an engineer who is making some impressive progress in ray-tracing research – a graphics technology that is likely to heavily impact the way graphics and animations are created in the future.

Daniel Pohl: Personally, I’ve been researching real-time ray-tracing for games since 2004. Back then on Quake 3: Ray Traced (www.q3rt.de). I figured out quite fast that there are a lot of benefits in using that technology. For example, for reflections and refractions you are simulating rays exactly like in nature. You get high quality results in an easy way. Looking several years ahead, I can’t imagine that game developers still want to use the approximation for those effect that are currently used.

Daniel Pohl: Once you have the possibility to shoot a ray effectively through a dynamic scene you can use that for even more. In my master thesis in 2006 at the University Erlangen & Saarland, I used the same rays as used for rendering to do collision detection. Once you shoot many million rays per image, the amount of collision detection rays is almost for free. That also means you don’t need to keep separate rendering and collision detection structures in the memory. You can use the same.

TG Daily: Back in June at Research@Intel Day, you used a Caneland platform system with a 16-core Tigerton setup to demonstrate Ray-traced ET: Quake Wars. That was quite a powerful system – any reason why Tigerton was the hardware of choice?

Daniel Pohl: Our ray-tracing research group is part of Intel’s Tera-Scale project. There we target future architectures that consists out of tens, hundreds and even thousands of cores. The Caneland platform with a total of 16 cores in a single machine gives us a good glimpse at what we can expect in future desktop systems. It allows us to study threading behavior and optimize for parallelization. So far we encountered almost linear scaling of the frame rate with the number of cores. The more cores, the better for ray-tracing!

Conclusion

This year, Intel will promote graphics at three consecutive tradeshows. For a company that has not been able to produce decent drivers for their integrated products, this kind of progress in the discrete segment is encouraging.

It is too early to say what impact Larrabee will have on the market, but the company is investing a sizable amount of money into this project. In fact, Intel is betting the farm on visual computing: The future will bring Larrabee’s in-order cores paired with Intel’s traditional out-of-order cores. Sort of a fusion.

Intel’s research group is pushing ray-tracing development on Intel’s chips, but we should not forget that there are companies such as JulesWorld, a small company from Los Angeles that is offering ray-tracing technology on graphics cards of today, not tomorrow.

We’re living in a very exciting time in history of computing. The Technology advancements that will be achieved in the next five years are likely to shape the future of communications, entertainment and computing.