Intel SSD 525 Review: Five mSATA Drives, From 30 To 240 GB

Intel SSD 525: Intel Goes 6 Gb/s With mSATA

Of the advances we've seen from solid-state storage over the years, perhaps the most under-appreciated is freedom to build SSDs in form factors that aren't married to mechanical rotational media. Obviously, 3.5” and 2.5” hard drives are well-established as standards. But in a world dominated by ever-shrinking devices, pushing conventional disks any smaller has been problematic. It's outright difficult to create a rocket-fast disk in a scant 50 mm.

The ability to store non-volatile data in any physical package you'd like means the mobile devices can keep information safe on microSD cards smaller than a postage stamp, and diminutive laptops enjoy storage options that slide right into a motherboard without a second thought to affecting Z-height. Even the largest servers benefit from higher storage density (not to mention obscenely favorable power-to-performance ratios) compared to spinning media.

After four decades, the hard drive market is almost entirely owned by two companies, and both physics and market forces work in tandem to make differentiation a headache.

That isn’t to say that the SSD landscape is so entirely different. A small cabal of fabricators crank out virtually every bit of NAND (pun intended) extant, while LSI SandForce and Marvell provide the lion’s share of controller shipments. Fortunately for us, there’s more than enough variety to keep things interesting. New controllers, new interfaces, and advanced flash manufacturing help push solid-state storage away from the considerations we make while evaluating legacy media. Smaller form factors are finally coming into their own.

SSD revenue is still a rounding error for Intel. Instead, the company's storage products are important for driving sales of its bread-and-butter offerings. Conceivably, they'd help take a bit of the sting out of sagging PC sales. A good example is Intel's 2.5” and mSATA-based SSD 311 drives, released alongside its Z68 Express platform to illustrate its caching features. Elsewhere, the SSD DC S3700 enterprise drives are shipping in 1.8” flavors to put more juice in dense blade servers (another market where Intel's high-margin server components shine a little brighter complemented by solid-state storage).

Now, Intel is dropping out of the motherboard business to focus on a future dominated by alternative form factors. And even though Ultrabooks haven't been as successful as the company hoped, a world of x86-powered tablets, NUCs, and all-in-ones necessitate NAND-driven storage. With that in mind, Intel recently introduced a new family of 6 Gb/s mSATA-based SSDs to address growing demand for pint-sized drives.

Meet The SSD 525

Today, we have a quintet of SSD 525 drives (code-named Lincoln Crest) that allow us to examine performance at the 30, 60, 120, 180, and 240 GB capacity points. Despite its new name, the SSD 525 is still mostly an SSD 520 in an mSATA form factor and Intel's LLKi firmware on top. Originally, that drive was the first fruit of a partnership between Intel and SandForce, which debuted a year ago, was driven by the SF-2281 controller, and featured specialized firmware. The SSD 520 included highly-binned synchronous 25 nm MLC flash from Intel's own fabs, and Lincoln Crest keeps the same tradition going.

The 30 GB model is particularly interesting to us, since it’s heavily outgunned, packing only four 64 Gb dies. With just half of the SF-2281’s channels populated, it looks to be the single-core Celeron of this family. Given how poorly 60/64 GB drives wielding eight 64 Gb die have performed in the past, we're definitely curious to see what the runt of the litter can do for its fairly hefty $53 MSRP.

Each member of the SSD 525 line-up wields Intel's 25 nm synchronous ONFi 2 flash from its private stash of highly-binned NAND. Due to mSATA's physical dimensions, four or less package emplacements are necessary, meaning capacity is restricted based on current die packaging. That still leaves all the most popular capacity points covered, leaving room for the interface to evolve as 128 Gb die become more popular.

As MLC (and TLC) NAND manufactured using the latest technology nudges endurance to new lows, it's increasingly difficult to get flash rated for 5,000 P/E cycles on the consumer side. Intel's SSD 525 might not be that adventurous, but it does have longevity going for it at least. And in a 50 mm travel size, too.

Swipe to scroll horizontally
Intel SSD 525 (mSATA)Total FlashDie CountChannels/InterleavingNAND Part No.
30 GB32 GB44x129F64G08LCME2
60 GB64 GB88x129F16B08MCME2
120 GB128 GB168x229F32B08NCME2
180 GB192 GB246x429F64B08PCME1
240 GB256 GB328x429F64B08PCME1

The SF-2281-VB1-SDC is an eight-channel controller. Simply populating each of the ASIC's channels doesn't mean all that much; die interleaving is more important. Interestingly, the 30 and 180 GB models don't utilize all eight channels. The 30 GB version populates just four with no interleaving, while the 180 GB varietal uses six channels. Each discrete channel needs a couple of die to spread operations across, lowering latency and increasing speed. In the -2281, four-way interleaving offers optimal performance. So, referencing the table above, the 240 GB drive should facilitate peak performance with all eight channels individually firing across four die.

In the case of the 30 GB SSD 525, we're expecting it to be severely hamstrung. The 180 GB model should nip at the largest 525's heels, though. For now, it's important to note that the 180 GB's 24 dice spread over six channels with 4x interleaving is practically identical to using all eight channels with 3x interleaving. The point? Just because each channel isn't being used doesn't mean speed is going to suffer. It all comes down to interleaving in modern controllers, especially the scalable SF-2281.

  • hero1
    Nice article. I would like to see more motherboard makers finding a way to include the mSATA slots right on the board like Gigabyte does. I think the ability to have your OS and programs on mSATA and leave the other SSD for games and storage is very welcome. This will be my next hunt, too bad I got rid of my UD5H because it had mSATA slot. I would like to see such feature in the X99/X89 platform.
  • abbadon_34
    Interesting, if it wasn't a single brand.
  • slomo4sho
    The 250 GB Samsung 840 still seems to be the best buy when evaluating price per performance as it is frequently offered at around $.60 or less per GB.
  • abbadon_34
    damn site changes, no edit.

    Interesting, if some benches weren't Intel only, but all included the relavent competitors.
  • sanilmahambre
    Impressive! but don't think i am wealthy enough to buy those
  • damianrobertjones
    It is REALLY unfair to reduce the performance of smaller GB drives!
  • dthx
    damianrobertjonesIt is REALLY unfair to reduce the performance of smaller GB drives!This is not something manufacturers do to just to p*ss off users who buy the smaller capacities.
    A small drive has fewer memory chips than a large drive. The controller has then fewer chips to efficiently spread the data to... and this leads to decreased performances. There's nothing immoral to that.
    It's not the same story like for example, a couple of years ago, Yamaha selling a 2x CD writer and a 4x CD writer at double the price ... and by removing one resistance, your 2x writer became a 4x model ;-)
  • mapesdhs
    slomo4shoThe 250 GB Samsung 840 still seems to be the best buy when
    evaluating price per performance as it is frequently offered at around $.60 or less per GB.
    It's a surprisingly good drive, and performs very well on boards that only have SATA2.
    I recently upgraded my brother's P55 system with an 840 250GB; the main game he
    plays atm now loads in just a few seconds, instead of the more than 3 minutes it took
    with the old mechanical disk (and that wasn't exactly a low-end drive either - a WD VR
    150GB 10K SATA). He is, as one might expect, very happy indeed.

    In addition, I bought him an internal Startech storage unit that holds 4 x 2.5" devices
    (it takes up one 5.25" bay) and a couple of 2.5" drives (1TB for general data, 2nd-hand
    250GB for backup of the 840). He bought another 1TB for backup, so the Startech now
    holds the 840, two 1TB and the 250GB. The end results looks rather good, and the
    performance with the 840 is excellent (I bought one for my 3930K setup).

    I have a lot of OCZ drives (more than 40, various models); what impresses me the most
    about the 840 is the way it maintains top performance even after being hammered with
    an 80GB full clone from an old disk, lots of Windows and driver updates, game installs, etc.
    Testing with HDTach, AS-SSD, etc. show performance almost identical to an original clean
    state. None of my OCZ drives behave this way - the HDTach graph shows significant
    variance, while the 840 graph is smooth across the range. Beats me how Samsung has
    achieved this, but I like it.

    Modern SSDs may be saturating the SATA3 interface, but they bring an amazing new lease
    of life to older SATA2 systems.


  • ddpruitt
    The vast majority of mSATA systems use the SSD as a cache, and then it's only Intel systems. I would like to see the mSATA ports be more flexible and offered on a larger variety of systems. I'd love to upgrade the mSATA on my laptop but there's no point, I already use an SSD for the main drive. Turning an mSATA into a usable drive on the system is a PITA and just not worth it.
  • Onus
    I have an Asus Maximus Gene V which has a mSATA slot on a little riser card. I am using a 238GB-usable Crucial M4 there as my system drive. It's been working well, so I have no complaints.
    I have an ASRock Z77E-ITX back from RMA that I haven't yet put back into service that has a mSATA slot on its underside. It can be used to build a very small system. That these slots are only 3Gb/s hardly matters when comparing them to the speed of a mechanical HDD.