Thermaltake Toughpower PF1 750W Power Supply Review

A power supply that's worthy of your money, with high performance and low noise output.

Thermaltake Toughpower PF1 750W
(Image: © Tom's Hardware)

Why you can trust Tom's Hardware Our expert reviewers spend hours testing and comparing products and services so you can choose the best for you. Find out more about how we test.

Protection Features

Check out our PSUs 101 article to learn more about PSU protection features.

Swipe to scroll horizontally

Protection Features

Row 0 - Cell 1


12V: 84.6A (136.45%), 12.070V
5V: 27.5A (137.5%), 5.063V
3.3V: 30.6A (153%), 3.334V
5VSB: 5.3A (212%), 4.803V


1024.34W (136.58%)


✓ (100°C @ secondary side)


12V to Earth: ✓
5V to Earth: ✓
3.3V to Earth: ✓
5VSB to Earth: ✓
-12V to Earth: ✓


Accurate (but <1ms delay)



Surge: -
Inrush: NTC Thermistor & Bypass relay

OCP is high at +12V and 5V, but it doesn't create any problems to the respective rails.  The 3.3V rail can also handle the high OCP triggering point, but it is insane to allow for so high amperage on this rail, which is only lightly used. 

The PSU shuts down at a relatively low temperature, on the secondary heat sink, but we didn't encounter any issues during our test sessions. Finally, it is a shame that there is no surge protection. 

DC Power Sequencing

According to Intel’s most recent Power Supply Design Guide (revision 1.4), the +12V and 5V outputs must be equal to or greater than the 3.3V rail at all times. Unfortunately, Intel doesn't mention why it is so important to always keep the 3.3V rail's voltage lower than the levels of the other two outputs.

The 3.3V rail is lower than the other two in all cases, as the ATX spec requires. 

Cross Load Tests

To generate the following charts, we set our loaders to auto mode through custom-made software before trying more than 25,000 possible load combinations with the +12V, 5V, and 3.3V rails. The deviations in each of the charts below are calculated by taking the nominal values of the rails (12V, 5V, and 3.3V) as point zero. The ambient temperature during testing was between 30 to 32 degrees Celsius (86 to 89.6 degrees Fahrenheit).

Load Regulation Charts

Efficiency Chart

(Image credit: Tom's Hardware)

Ripple Charts

The lower the power supply's ripple, the more stable the system will be and less stress will also be applied to its components.

Infrared Images

We apply a half-load for 10 minutes with the PSU's top cover and cooling fan removed before taking photos with a modified FLIR E4 camera able to deliver an IR resolution of 320x240 (76,800 pixels).

The hottest part is the vertical metallic bar right next to the +12V FETs, which is dead close to the filtering capacitors on the secondary side. This won't be a significant issue, though, because the airflow in this area is unobstructed.

MORE: Best Power Supplies

MORE: How We Test Power Supplies

MORE: All Power Supply Content

Contributing Editor

Aris Mpitziopoulos is a Contributing Editor at Tom's Hardware US, covering PSUs.

  • bdcrlsn
    I know they're not actually made by Thermaltake, but I've had a Toughpower 650-watt for 7 years and had no issues whatsoever. They're good choices these days in a saturated market.
  • Braindead154
    I bought two of these power supplies to use in my new rig. BOTH of them had a high pitched whine when my computer was off or sleeping (MSI MEG x570 Unify). As much as I appreciated the long warranty and build quality, I prefer not to have a dog whistle in my PC case. They were returned.