Intel Architecture Day 2021: Alder Lake Chips, Golden Cove and Gracemont Cores

Alder Lake comes with promising advances, matching AMD's core counts and leapfrogging both AMD and Apple's M1, at least for now, with support for DDR5 and PCIe 5.0 technology. But Intel's goal to redefine its desktop PC and notebook lineups is risky — as Raja Koduri aptly describes it, Alder Lake is one of the biggest shifts in x86 architectures in over a decade.

(Image credit: Inel)

Alder Lake comes to market at an important time in the company's history. Potent adversaries challenge Intel on both sides, with AMD's Ryzen processors steadily chewing away at Intel's leading position in both desktop PCs and laptops, while Apple's M1 laptop processors with their Arm-based design have set a high bar for hybrid designs and have helped propel Arm to its highest desktop PC market share in history.

In fact, Apple's M1 has brought a step-function improvement in both performance and power consumption over competing x86 chips, with much of that success coming from Arm's long-standing support for hybrid architectures and the requisite software optimizations.

Intel is on a similar trajectory with its collaboration with Microsoft to enable enhanced Windows 11 support for its x86 hybrid chips. In fact, Intel's Thread Director technology could be one of the most important aspects of the Alder Lake disclosures today. This is the sleeper tech that will determine Alder Lake's fate.

Intel fully expects that Alder Lake will be more than the sum of its parts, with its hybrid x86 architecture delivering a non-linear performance increase. Intel has a seemingly great canvas to paint on with its pairing of efficient Gracemont and high-performance Golden Cove cores, but it has to make sure that the paint lands in the right place. Or, in this case, the threads land on the correct cores.

If the threads land where they should, Intel could have a winner. In lightly threaded work, Gracemont purportedly provided 40% (or more) performance at the same power (ISO power) as the Skylake chip, meaning Skylake consumes 2.5 times more power to give the same level of performance as the Gracemont core. In threaded work, Gracemont delivers 80% more performance while consuming less power, or the same throughput at 80% less power. That means Skylake needs five times the power for the same performance, which is impressive indeed. Spam enough of these small cores into a package and you'll have a powerful chip that can trade blows with the heavyweights, even on the Arm side, but at equivalent or lower power.

Things are just as impressive on the performance core side things. Intel claims Golden Cove delivers a 19% increase in IPC over Cypress Cove, which already is plenty impressive in single-threaded work. In fact, Golden Cove's IPC improvement is larger than the improvement from Skylake to Sunny/Cypress Cove. That's impressive, if true. Intel already leads in single-core performance, so Alder Lake could be well-positioned against AMD's Zen 4 chips if it can pull off a comparable advance.

We won't have to wait much longer to see how effective Intel's preparations have been, Alder Lake comes to market in Fall 2021. We're sure to learn more at the inaugural Intel Innovation event October 27-28.

Paul Alcorn
Managing Editor: News and Emerging Tech

Paul Alcorn is the Managing Editor: News and Emerging Tech for Tom's Hardware US. He also writes news and reviews on CPUs, storage, and enterprise hardware.

  • TerryLaze
    Alder Lake does not support AVX-512 under any condition (fused off in P cores, not supported in E cores).
    Called it that all they need to do to get power draw down to ryzen levels is to turn off avx.
    If they also locked down power limits, at least on non OC boards, they can sell it as super future low power tech.
    Reply
  • JWNoctis
    No AVX-512 at all?...Yeah, that's gonna be a rather huge regression for those applications that made use of them, which is admittedly uncommon in consumer space.

    But then there's not that much difference between Core, Pentium, and Celeron lines anymore, unless they are going to detune IPC in microcode or something. What's the name of the next one, I wonder?
    Reply
  • TerryLaze
    JWNoctis said:
    No AVX-512 at all?...Yeah, that's gonna be a rather huge regression for those applications that made use of them, which is admittedly uncommon in consumer space.

    But then there's not that much difference between Core, Pentium, and Celeron lines anymore, unless they are going to detune IPC in microcode or something. What's the name of the next one, I wonder?
    Rocketlake didn't get any pentiums or celerons, no reason to believe that alder lake will have them.
    Now the celeron (atom) is going to be integrated in the core... :p
    Reply
  • NightLight
    Promising stuff... great time to buy some shares!
    Reply
  • Giroro
    Intel keeps talking up how great their tiny gracemont cores are... But if 4 gracemont cores were able to outperform 1 Golden Cove core, then the entire CPU would be gracemont. I think its no coincidence that their desktop CPUs tacked on exactly enough tiny cores to confuse people into thinking they have parity with 16-core ryzen. Just like how they renamed their 10nm process to give the illusion of parity.

    I have no confidence whatsoever that their 8C/8c/24t processor has better multithreaded performance than a hypothetical 10C/0c/20t processor. If that were the case, then the configurations would be more like 0C/40c/40t... Or maybe even 2C/32c/36t.

    But no, this is all about how they can technically get away with selling what is essentially an 8 core processor, using a giant sign that says 16 CORES* WORLD'S BEST EFFICIENCY**!
    They at least know performance matters a little bit, because a 40 CORE CPU has to got be pretty tempting to somebody in their marketing department, regardless of how bad it would be.
    Reply
  • Johnpombrio
    This will probably be my next CPU replacing my i9-9900K. I need at least PCI-4.0 for my 2TB Samsung 980 Pro ($313 lightning deal in Amazon Prime day in June). I will never need all of these cores tho.
    Reply
  • mdd1963
    Cautiously optimistic, but, I recall feeling the same way before 11th gen released...

    This time I will be pessimistic until happily (hopefully) proven wrong. :)

    (Need some BF1/BF5 1080P benchmarks to truly know if Alder Lake is 'mo betta'!)
    Reply
  • JamesJones44
    Giroro said:
    Intel keeps talking up how great their tiny gracemont cores are... But if 4 gracemont cores were able to outperform 1 Golden Cove core, then the entire CPU would be gracemont. I think its no coincidence that their desktop CPUs tacked on exactly enough tiny cores to confuse people into thinking they have parity with 16-core ryzen. Just like how they renamed their 10nm process to give the illusion of parity.

    I have no confidence whatsoever that their 8C/8c/24t processor has better multithreaded performance than a hypothetical 10C/0c/20t processor. If that were the case, then the configurations would be more like 0C/40c/40t... Or maybe even 2C/32c/36t.

    But no, this is all about how they can technically get away with selling what is essentially an 8 core processor, using a giant sign that says 16 CORES* WORLD'S BEST EFFICIENCY**!
    They at least know performance matters a little bit, because a 40 CORE CPU has to got be pretty tempting to somebody in their marketing department, regardless of how bad it would be.

    How do you explain M1s multi thread performance then, the quote makes little sense. There is a lot more to CPU design than the number of cores and their single thread IPC. I don't claim to know if they will be able to compete with a 10 big core CPU, but the M1 and other hybrid architectures prove that very good multi thread performance can be had with the big little design.
    Reply
  • ezst036
    Giroro said:
    I think its no coincidence that their desktop CPUs tacked on exactly enough tiny cores to confuse people into thinking they have parity with 16-core ryzen. Just like how they renamed their 10nm process to give the illusion of parity.

    There may be some of that, but Intel at this point can afford to cede some of the high end to AMD. They don't have to outright win, they just have to be competitive enough. And Intel is also prepping to fight AMD as well on the GPU front.(also nVidia)

    Intel's biggest threat is ARM. They cannot afford to keep taking it on the chin any longer in mobile. Alder Lake big.little will be a game changer even if it doesn't get the final mile to energy efficiency utopia.

    But really, I think people also forget or they discount that the pressure from manufacturing also is playing a factor here. Intel's fab woes go back how many years now? Intel needs small cores partially, and manufacturing woes in all sectors of chip manufacturing is going to force AMD to do the same with big.LITTLE. They've got Jaguar or Bobcat or whatever the latest iteration of that little core was, it won't be long before it's tacked on for some AMD big.LITTLE also.

    16 big cores is simply more stress on manufacturing than 8 big and 8 small when you factor in the big picture and tons of silicon wafer after wafer after wafer. Alder Lake helps Intel to help Intel out on their fab woes.
    Reply
  • ezst036
    JamesJones44 said:
    How do you explain M1s multi thread performance then

    You only need one word.

    Optimization.

    Apple controls all aspects of MacOS, and are particularly fans of cutting off their own customers after so many years. They don't want, don't need, and simply don't carry a lot of legacy "baggage" - even if you spent $8000 on your computer. Apple will cut you off.

    You explain M1 performance with optimizations under the hood.
    Reply