AMD Ryzen 7000's Tiny RDNA2 GPU Overclocked to 3.1 GHz

AMD's latest Ryzen 7000-series processors for desktops based on the Zen 4 microarchitecture feature a tiny RDNA-based graphics processing unit inside their I/O die (IOD). This GPU is hardly meant for gaming, but as SkatterBencher discovered, it can still be overclocked, which improves its performance by around 42% in case of AMD's Ryzen 7900 processor (via VideoCardz). This does not mean the GPU suddenly becomes a viable gaming solution, but at least it will gain performance.

AMD's Ryzen 7000-series 'Raphael' desktop CPUs integrate an RDNA 2-based GPU with 128 stream processors and 2 CUs inside their IOD. This graphics solution operates at up to 2.20 GHz and delivers about 0.563 FP32 TFLOPS of compute throughput, which is comparable to a high-end graphics card from 2007 (e.g., ATI Radeon HD 2900 XT). That's by far not enough to get decent frame rates in a modern game. Still this GPU can display graphics and playback some videos. Furthermore, it can be overclocked. 

AMD

(Image credit: SkatterBencher)

AMD OC GPU performance

(Image credit: SkatterBencher)

From the performance point of view, this brings an up to 42.5% of additional performance in games like Tomb Raider, but at 17 frames per second the title remains unplayable. Furthermore, it also allows to run a raytracing benchmark that does not work on the built-in GPU by default. Yet, even such extreme overclocking does not bring a substantial performance improvement in a number of synthetic benchmarks, possibly because of other limitations.

While overclocking of the integrated RDNA 2-based GPU does not seem to bring any real-world fruits, it is a doable. Furthermore, now that AMD does not allow adjusting the voltage/frequency curve on discrete RDNA 3 graphics cards, it looks like overclocking of its integrated GPUs is easier than overclocking of discrete GPUs.

Anton Shilov
Contributing Writer

Anton Shilov is a contributing writer at Tom’s Hardware. Over the past couple of decades, he has covered everything from CPUs and GPUs to supercomputers and from modern process technologies and latest fab tools to high-tech industry trends.