Why you can trust Tom's Hardware
Advanced Transient Response Tests
For details about our transient response testing, please click here.
In the real world, power supplies are always working with loads that change. It's of immense importance, then, for the PSU to keep its rails within the ATX specification's defined ranges. The smaller the deviations, the more stable your PC will be with less stress applied to its components.
We should note that the ATX spec requires capacitive loading during the transient rests, but in our methodology, we also choose to apply a worst case scenario with no additional capacitance on the rails.
Advanced Transient Response at 20% – 200ms
Voltage | Before | After | Change | Pass/Fail |
---|---|---|---|---|
12V | 11.998V | 11.836V | 1.35% | Pass |
5V | 5.050V | 4.964V | 1.70% | Pass |
3.3V | 3.338V | 3.239V | 2.97% | Pass |
5VSB | 5.109V | 5.072V | 0.72% | Pass |
Advanced Transient Response at 20% – 20ms
Voltage | Before | After | Change | Pass/Fail |
12V | 12.002V | 11.820V | 1.52% | Pass |
5V | 5.054V | 4.961V | 1.84% | Pass |
3.3V | 3.341V | 3.223V | 3.53% | Pass |
5VSB | 5.110V | 5.066V | 0.86% | Pass |
Advanced Transient Response at 20% – 1ms
Voltage | Before | After | Change | Pass/Fail |
12V | 12.005V | 11.827V | 1.48% | Pass |
5V | 5.053V | 4.958V | 1.88% | Pass |
3.3V | 3.340V | 3.216V | 3.71% | Pass |
5VSB | 5.110V | 5.065V | 0.88% | Pass |
Advanced Transient Response at 50% – 200ms
Voltage | Before | After | Change | Pass/Fail |
12V | 11.998V | 11.875V | 1.03% | Pass |
5V | 5.044V | 4.958V | 1.70% | Pass |
3.3V | 3.334V | 3.228V | 3.18% | Pass |
5VSB | 5.081V | 5.046V | 0.69% | Pass |
Advanced Transient Response at 50% – 20ms
Voltage | Before | After | Change | Pass/Fail |
12V | 12.002V | 11.837V | 1.37% | Pass |
5V | 5.045V | 4.948V | 1.92% | Pass |
3.3V | 3.335V | 3.212V | 3.69% | Pass |
5VSB | 5.082V | 5.045V | 0.73% | Pass |
Advanced Transient Response at 50% – 1ms
Voltage | Before | After | Change | Pass/Fail |
12V | 12.001V | 11.818V | 1.52% | Pass |
5V | 5.045V | 4.951V | 1.86% | Pass |
3.3V | 3.335V | 3.212V | 3.69% | Pass |
5VSB | 5.082V | 5.031V | 1.00% | Pass |
Results 25-29: Transient Response
The transient response is good, overall. Only in the 3.3V rail, the Ion SFX model doesn't reach the top performance of Corsair's SFX offerings, but this rail is not so important anymore.
Turn-On Transient Tests
In the next set of tests, we measure the PSU's response in simpler transient load scenarios—during its power-on phase. Ideally, we don't want to see any voltage overshoots or spikes since those put a lot of stress on the DC-DC converters of installed components.
There is a small voltage overshoot at 5VSB, while the +12V rail has a less linear slope, which won't be the cause of any trouble, though.
Power Supply Timing Tests
There are several signals generated by the power supply, which need to be within specified, by the ATX spec, ranges. If they are not, there can be compatibility issues with other system parts, especially mainboards. From year 2020, the PSU's Power-on time (T1) has to be lower than 150ms and the PWR_OK delay (T3) from 100 to 150ms.
Load | T1 (Power-on time) | T3 (PWR_OK delay) |
20% | 76 | 314 |
100% | 78 | 312 |
The PWR_OK delay is out of the 100-150ms region, so the PSU does not support the alternative sleep mode, which will be a requirement, according to our sources at least, by the ATX v2.52 from 2020.
Ripple Measurements
Ripple represents the AC fluctuations (periodic) and noise (random) found in the PSU's DC rails. This phenomenon significantly decreases the capacitors' lifespan because it causes them to run hotter. A 10-degree Celsius increase can cut into a cap's useful life by 50%. Ripple also plays an important role in overall system stability, especially when overclocking is involved.
The ripple limits, according to the ATX specification, are 120mV (+12V) and 50mV (5V, 3.3V, and 5VSB).
Test | 12V | 5V | 3.3V | 5VSB | Pass/Fail |
10% Load | 15.5 mV | 6.0 mV | 14.3 mV | 11.4 mV | Pass |
20% Load | 17.5 mV | 6.4 mV | 14.4 mV | 10.8 mV | Pass |
30% Load | 15.5 mV | 6.6 mV | 13.4 mV | 11.1 mV | Pass |
40% Load | 14.6 mV | 6.9 mV | 13.8 mV | 11.0 mV | Pass |
50% Load | 14.4 mV | 7.1 mV | 13.9 mV | 11.5 mV | Pass |
60% Load | 15.2 mV | 7.5 mV | 14.6 mV | 11.5 mV | Pass |
70% Load | 15.9 mV | 8.3 mV | 15.4 mV | 11.7 mV | Pass |
80% Load | 16.5 mV | 8.1 mV | 16.8 mV | 12.7 mV | Pass |
90% Load | 17.0 mV | 9.0 mV | 16.9 mV | 13.1 mV | Pass |
100% Load | 25.6 mV | 10.0 mV | 20.3 mV | 15.3 mV | Pass |
110% Load | 25.9 mV | 10.0 mV | 17.8 mV | 16.4 mV | Pass |
Crossload 1 | 23.6 mV | 9.7 mV | 19.0 mV | 13.0 mV | Pass |
Crossload 2 | 25.5 mV | 7.8 mV | 16.6 mV | 15.1 mV | Pass |
The ripple suppression is good on all voltage rails.
Ripple At Full Load
Ripple Full Load Scope Shots
Ripple At 110% Load
Ripple At Cross-Load 1
Ripple At Cross-Load 2
EMC Pre-Compliance Testing – Average & Peak EMI Detector Results
Electromagnetic Compatibility (EMC) is the ability of a device to operate properly in its environment without disrupting the proper operation of other close-by devices.
Electromagnetic Interference (EMI) stands for the electromagnetic energy a device emits, and it can cause problems in other close-by devices if too high. For example, it can be the cause of increased static noise in your headphones or/and speakers.
We measured higher than the limits EMI spikes at 150KHz and 150KHz. In the rest frequency range the conducted EMI emissions are much lower than the corresponding limits.
MORE: Best Power Supplies
MORE: How We Test Power Supplies
MORE: All Power Supply Content
Current page: Transient Response Tests, Timing Tests, Ripple Measurements and EMC Pre-Compliance Testing
Prev Page Protection Features, DC Power Sequencing, Cross-Load Tests and Infrared Images Next Page Performance, Noise and EfficiencyAris Mpitziopoulos is a contributing editor at Tom's Hardware, covering PSUs.