Hands-On: A Second mSATA-Based SSD Emerges

SSD Form Factors, Explored

A few years ago, you didn't really have to worry about the form factor of your storage device. Conventional 3.5” hard drives went into servers and desktop PCs. Smaller 2.5” drives dropped into notebooks. And more niche packages like 1.8" and 1" (IBM Microdrive) disks slid into mobile solutions and consumer devices.

But the world has changed. Today, 2.5” drives conquer the data center by serving up storage density. That means IT professionals figured out you could cram more capacity and I/O throughput into a given rack-mounted enclosure using smaller drives compared to an array of 3.5" disks. Moreover, the advent of solid-state drives basically makes larger form factors obsolete from a purely technical standpoint. But how small can we go without jeopardizing performance, capacity, flexibility?

The Serial ATA International organization announced mSATA back in September of 2009. It's important to note that mSATA, which stands for mini-SATA is a form factor; it has nothing to do with the micro interface connector used to attach 1.8" hard drives.

mSATA is based on a physical mini PCI Express interface, but it runs conventional SATA 3 Gb/s electrical signaling. One mSATA product is Intel’s 310 series SSD, and you will also find the same physical drive format in Apple’s MacBook Pro (although it is not compatible with mSATA). With Intel having recently adopted the standard and Samsung standing by to supply more of these devices to the industry, we believe that the mSATA standard has a real chance to be widely adopted.

Why is mSATA necessary, anyway?

Great question. After all, we've already seen that it's possible to use PCI Express links to attach flash-based storage and a SATA controller on the same small circuit board. We recently saw a variation on this concept in The OCZ RevoDrive 3 X2 Preview: Second-Gen SandForce Goes PCIe.

But while that might be a viable approach when it comes to high-performance products like the RevoDrive, it doesn't work as well on the mobile side because it prevents maximum integration. While today’s notebooks are based on two, three, or four silicon-based components (the processor, the chipset, wireless, and oftentimes a discrete graphics controller), future designs aim at reducing the total number of pieces to help minimize total system cost. Utilizing SSD storage that requires its own controller would add unnecessary complexity. And it would be difficult to integrate mini PCI Express-based storage with systems such as Intel’s Z68 Express chipset that allow these drives to be utilized as fast caches.

Latest in SSDs
Tech Deals
Crucial's 2TB T705 - the fastest available consumer Gen 5 SSD - has sold out at Amazon, but you can get the same drive with a heatsink for an extra $20
4TB SSD Deals
4TB SSDs now 5 cents per GB, Samsung drives on Sale
Seagate SSD
Newegg is selling this speedy 1TB PCIe 4.0 SSD at 6 cents per GB
Kioxia LC9 123TB SSD
Kioxia shows off new 122.88 TB SSD — PCIe 5.0 LC9 packs a whole lot of QLC NAND
Crucial T705 SSD
Crucial's superfast 2TB T705 Gen 5 SSD is back down to its lowest-ever price — Grab one of these drives for the ultimate gaming PC build
Samsung 9100 Pro SSD
Samsung 9100 Pro SSD Review: Samsung’s Capable Answer to Phison’s Storage Gauntlet
Latest in Features
Free Alternatives to Photoshop
Five Best Photoshop Alternatives Tested: Image Editing for Free
Awekeys Antiques Metal keycaps
Awekeys Antiques Metal keycaps are Viking-themed luxury for your fingertips
The Gigabyte X870E AORUS ELITE WIFI7
Get the most out of your processor with this motherboard's Turbo Mode
AMD RDNA 4 and Radeon RX 9000-series GPUs
AMD RDNA 4 and Radeon RX 9000-series GPUs start at $549: Specifications, release date, pricing, and more revealed
MSI Prestige GPU
Tested: Intel's Arrow Lake 140T iGPU mostly maintains an edge over AMD's older 880m
MechBoards Hyper7 R4
I’m typing this on the world’s largest keyboard, a 178-key beast designed to make you more productive