Why you can trust Tom's Hardware
Advanced Transient Response Tests
For details about our transient response testing, please click here.
In the real world, power supplies are always working with loads that change. It's of immense importance, then, for the PSU to keep its rails within the ATX specification's defined ranges. The smaller the deviations, the more stable your PC will be with less stress applied to its components.
We should note that the ATX spec requires capacitive loading during the transient rests, but in our methodology, we also choose to apply a worst case scenario with no additional capacitance on the rails.
Advanced Transient Response at 20% – 200ms
Voltage | Before | After | Change | Pass/Fail |
---|---|---|---|---|
12V | 12.100V | 11.995V | 0.87% | Pass |
5V | 4.997V | 4.878V | 2.38% | Pass |
3.3V | 3.316V | 3.153V | 4.92% | Pass |
5VSB | 5.066V | 5.007V | 1.16% | Pass |
Advanced Transient Response at 20% – 20ms
Voltage | Before | After | Change | Pass/Fail |
---|---|---|---|---|
12V | 12.099V | 11.941V | 1.31% | Pass |
5V | 4.995V | 4.849V | 2.92% | Pass |
3.3V | 3.316V | 3.119V | 5.94% | Fail |
5VSB | 5.066V | 5.025V | 0.81% | Pass |
Advanced Transient Response at 20% – 1ms
Voltage | Before | After | Change | Pass/Fail |
---|---|---|---|---|
12V | 12.098V | 11.972V | 1.04% | Pass |
5V | 4.996V | 4.852V | 2.88% | Pass |
3.3V | 3.316V | 3.119V | 5.94% | Fail |
5VSB | 5.067V | 5.018V | 0.97% | Pass |
Advanced Transient Response at 50% – 200ms
Voltage | Before | After | Change | Pass/Fail |
---|---|---|---|---|
12V | 12.095V | 11.998V | 0.80% | Pass |
5V | 4.991V | 4.866V | 2.50% | Pass |
3.3V | 3.311V | 3.141V | 5.13% | Pass |
5VSB | 5.029V | 4.970V | 1.17% | Pass |
Advanced Transient Response at 50% – 20ms
Voltage | Before | After | Change | Pass/Fail |
---|---|---|---|---|
12V | 12.095V | 11.935V | 1.32% | Pass |
5V | 4.991V | 4.839V | 3.05% | Pass |
3.3V | 3.311V | 3.106V | 6.19% | Fail |
5VSB | 5.030V | 4.982V | 0.95% | Pass |
Advanced Transient Response at 50% – 1ms
Voltage | Before | After | Change | Pass/Fail |
---|---|---|---|---|
12V | 12.092V | 11.943V | 1.23% | Pass |
5V | 4.992V | 4.841V | 3.02% | Pass |
3.3V | 3.312V | 3.108V | 6.16% | Fail |
5VSB | 5.030V | 4.985V | 0.89% | Pass |
Results 25-29: Transient Response
The transient response at +12V, which is the most crucial rail, is good. The voltage deviations are high on the minor rails, though, especially at 3.3V.
Turn-On Transient Tests
In the next set of tests, we measure the PSU's response in simpler transient load scenarios—during its power-on phase. Ideally, we don't want to see any voltage overshoots or spikes since those put a lot of stress on the DC-DC converters of installed components.
Turn-On Transient Response Scope Shots
The voltage at +12V takes some time to reach the nominal value. This won't create any problems, though.
Power Supply Timing Tests
There are several signals generated by the power supply, which need to be within specified, by the ATX spec, ranges. If they are not, there can be compatibility issues with other system parts, especially mainboards. From year 2020, the PSU's Power-on time (T1) has to be lower than 150ms and the PWR_OK delay (T3) from 100 to 150ms.
T1 (Power-on time) & T3 (PWR_OK delay) | Row 0 - Cell 1 | Row 0 - Cell 2 |
Load | T1 | T3 |
20% | 78 | 316 |
100% | 88 | 316 |
The PWR_OK delay is out of the 100-150ms region, so according to the ATX spec, the PSU does not meet the requirements of the alternative sleep mode.
Ripple Measurements
Ripple represents the AC fluctuations (periodic) and noise (random) found in the PSU's DC rails. This phenomenon significantly decreases the capacitors' lifespan because it causes them to run hotter. A 10-degree Celsius increase can cut into a cap's useful life by 50%. Ripple also plays an important role in overall system stability, especially when overclocking is involved.
The ripple limits, according to the ATX specification, are 120mV (+12V) and 50mV (5V, 3.3V, and 5VSB).
Test | 12V | 5V | 3.3V | 5VSB | Pass/Fail |
10% Load | 12.0 mV | 10.3 mV | 6.8 mV | 5.5 mV | Pass |
20% Load | 16.9 mV | 12.9 mV | 8.6 mV | 5.7 mV | Pass |
30% Load | 20.0 mV | 12.9 mV | 9.6 mV | 5.9 mV | Pass |
40% Load | 22.5 mV | 12.9 mV | 10.1 mV | 5.9 mV | Pass |
50% Load | 24.4 mV | 14.2 mV | 10.5 mV | 6.3 mV | Pass |
60% Load | 25.9 mV | 15.2 mV | 11.0 mV | 7.2 mV | Pass |
70% Load | 27.6 mV | 16.8 mV | 11.0 mV | 6.7 mV | Pass |
80% Load | 28.7 mV | 17.7 mV | 13.7 mV | 8.5 mV | Pass |
90% Load | 29.6 mV | 21.1 mV | 14.3 mV | 9.1 mV | Pass |
100% Load | 31.1 mV | 24.3 mV | 15.5 mV | 8.4 mV | Pass |
110% Load | 33.3 mV | 24.8 mV | 16.4 mV | 9.5 mV | Pass |
Crossload 1 | 16.0 mV | 17.7 mV | 11.8 mV | 5.4 mV | Pass |
Crossload 2 | 30.6 mV | 16.3 mV | 13.9 mV | 7.6 mV | Pass |
Results 30-33: Ripple Suppression
The lack of in-cable capacitors doesn't allow for flawless ripple suppression. Nonetheless, the PSU achieves satisfactory performance in this section.
Ripple At Full Load
Ripple Full Load Scope Shots
Ripple At 110% Load
Ripple 110% Load Scope Shots
Ripple At Cross-Load 1
Ripple CL1 Load Scope Shots
Ripple At Cross-Load 2
Ripple CL2 Load Scope Shots
EMC Pre-Compliance Testing – Average & Peak EMI Detector Results
Electromagnetic Compatibility (EMC) is the ability of a device to operate properly in its environment without disrupting the proper operation of other close-by devices.
Electromagnetic Interference (EMI) stands for the electromagnetic energy a device emits, and it can cause problems in other close-by devices if too high. For example, it can be the cause of increased static noise in your headphones or/and speakers.
There are no high spurs, that exceed the corresponding limits.
MORE: Best Power Supplies
MORE: How We Test Power Supplies
MORE: All Power Supply Content
Current page: Transient Response Tests, Timing Tests, Ripple Measurements and EMC Pre-Compliance Testing
Prev Page Protection Features, DC Power Sequencing, Cross-Load Tests and Infrared Images Next Page Performance, Noise and EfficiencyAris Mpitziopoulos is a contributing editor at Tom's Hardware, covering PSUs.