3D Chips and Cards

The Second Generation Of 3D Chips

Let's focus on those chips, that provide today's top performance, TNT2, Voodoo3, Rage128, G400, PowerVR SG, Permedia3, etc. Voodoo3 was the first of those chips and the expectations were high when Voodoo3 was announced for the first time, since 3Dfx had the history of supplying two top performers in the past, the Voodoo in 1997 and the Voodoo2 in 1998. At Comdex 1998 the journalist and card-makers weren't too impressed with the Voodoo3-features though. Even the following marketing campaign wasn't able to convince more than a few fanatic 3Dfx followers, when 3Dfx threw in all of their arrogance and ignorance towards the criticism of 3D analysts and journalists about missing features of Voodoo3. What is sold as 'Voodoo3' today should rather carry the name 'Banshee2', since it's a straightforward development of Banshee with performance measures that are close to Voodoo2. We certainly don't want to forget improvements as digital flat panel support, higher resolutions and better RAMDAC and the price/performance ratio of Voodoo3 is also way better than Voodoo2 SLI. However, the absolute performance as well as the long list of missing features has disappointed a lot of hard core gamers.

3D Card Requirements For Power Gamers

We are trying to answer the question of what we should expect of an up-to-date 3D card today. Tom's Hardware Guide expects no less than what is currently doable and thus we got to the following criteria:

OpenGl (ICD) And DirectX (6.x) Support

The support of those two is of the highest importance for optimal 3D-game support. The majority of 1st person 3D-action shooters is based on OpenGL, Quake2, Quake Arena, Unreal, Unreal Tournament, Halflife and many more are the typical examples. The majority of all other games is covered by DirectX, particularly flight simulators and racing games are mainly based on this 3D-interface from Microsoft. A 3D-card that doesn't support those two 3D-platforms is pretty much out of the question for any gamer.

Fill Rates In Excess Of 300 Mpixel/s Or Mtexel/s

The fill rates quoted by the chip vendors should be taken with a decent grain of salt. Firstly those data are 'synthetic', comparable to MIPS or MFLOPS of CPUs. The fill rate can be calculated from the 3D-chip clock, the number of independent pipelines of the chip, the graphics memory bandwidth and of course the hardwired features of the chip. The color depth, Z-buffer and particularly rendering quality varies significantly in between the vendors. A good example for this is TNT2, which has a lower theoretical fill rate than Voodoo3, but it scores higher frame rates in complex 3D scenes. Still the fill rate can give you some kind of idea of what kind of 3D-performance you can expect from a 3D-chip.