Skip to main content

Wireless Routers 101

Wi-Fi Standards

The oldest wireless routers supported 802.11b, which worked on the 2.4GHz band and topped out at 11 Mb/s. This original Wi-Fi standard was approved in 1999, hence the name 802.11b-1999 (later it was shortened to 802.11b).

Another early Wi-Fi standard was 802.11a, also ratified by the IEEE in 1999. It operated on the less congested 5GHz band and maxed out at 54 Mb/s, although real-world throughput was closer to half that number. Given a shorter wavelength than 2.4GHz, the range of 802.11a was shorter, which may have contributed to less uptake. While 802.11a enjoyed popularity in some enterprise applications, it was largely eclipsed by the more pervasive 802.11b in homes and small businesses. Notably, 802.11a's 5GHz band became part of later standards.

Eventually, 802.11b was replaced by 802.11g on the 2.4GHz band, upping throughput to 54 Mb/s. It all makes for an interesting history lesson, but if your wireless equipment is old enough for that information to be relevant, it's time to consider an upgrade.


In the fall of 2009, 802.11n was ratified, paving the way for one device to operate on both the 2.4GHz and 5GHz bands. Speeds topped out at 600 Mb/s. With N600 and N900 gear, two separate service set identifiers (SSIDs) were transmitted—one on 2.4GHz and the other on 5GHz—while less expensive N150 and N300 routers cut costs by transmitting only on the 2.4GHz band.

Wireless N networking introduced an important advancement called MIMO, an acronym for "multiple input/multiple output." This technology divides the data stream between multiple antennas. We'll go into more depth on MIMO shortly.

If you're satisfied with the performance of your N wireless gear, then hold onto it for now. After all, it does still exceed the maximum throughput offered by most ISPs. Here are some examples of available 802.11n product speeds:

Type2.4GHz (Mb/s)5GHz (Mb/s)


The 802.11ac standard, also known as Wireless AC, was released in January 2014. It broadcasts and receives on both the 2.4GHz and 5GHz bands, but the 2.4GHz frequency on an 802.11ac router is really a carryover of 802.11n. That older standard maxed out at 150 Mb/s on each spatial stream, with up to four simultaneous streams, for a total throughput of 600 Mb/s.

In 802.11ac MIMO was also refined with increased channel bandwidth and support for up to eight spatial streams. Beamforming was introduced with Wireless N gear, but it was proprietary, and with AC, it was standardized to work across different manufacturers' products. Beamforming is a technology designed to optimize the transmission of Wi-Fi around obstacles by using the antennas to direct and focus the transmission to where it is needed.

With 802.11ac firmly established as the current Wi-Fi standard, enthusiasts shopping for routers should consider one of these devices, as they offer a host of improvements over N gear. Here are some examples of available 802.11ac product speeds:

Type2.4GHz (Mb/s)5GHz (Mb/s)
AC32006001300, 1300

The maximum throughput achieved is the same on AC1900 and AC3200 for both the 2.4GHz and 5GHz bands. The difference is that AC3200 can transmit two simultaneous 5GHz networks to achieve such a high total throughput.

The latest wireless standard with products currently hitting the market is 802.11ac Wave 2. It implements multiple-user, multiple-input, multiple-output, popularly referred to as MU-MIMO. In broad terms, this technology provides dedicated bandwidth to more devices than was previously possible.