Building With The V3 Voltair
Understanding that the top side of the TEC element is hot, and the bottom cold, a quick look underneath shows that the Voltair has two separate heatsinks, an inner sink to cool the hot side and an outer sink to warm cold side. This might seem a little counter-intuitive, but it does appear to be an effective way to reduce the condensation problem. The cold side should never be more than slightly cooler than the air inside the case. And, just to make sure that those outer heat pipes make good contact with the CPU, they’re flattened, machined, and polished.
Beyond basic condensation, the two-part sink also addresses a second potential hazard of TEC coolers. Element failure can open or short the circuit, causing it to either quit transferring heat or worse, get hot on both sides. In the past, liquid cooling gurus would sometimes place a TEC element between a water block and CPU and assume the risk of a burned processor if the TEC failed. By placing a second set of heat pipes between the TEC element and CPU heat spreader, V3 Component has reduced the amount of heat that would get from a shorted-out TEC to the CPU. In other words, if the cooler ever fails, a normally functioning PC should have enough time to detect the heat problem and shut down. The system could potentially remain running off the outer sink alone in the more-likely event of an open circuit, though the reduced cooling capacity could cause an overclocked system to crash.
Two sets of base brackets allow the Voltair TEC CPU cooler to fit Intel’s square LGA and AMD’s rectangular socket mounting patterns. We installed the Intel version.
Two sets of standoffs are threaded to fit either LGA 2011 (v3) brackets or the V3-supplied support plate. Those who need the support plate must add it to the back of the board, behind the socket.
The cooler then threads onto the standoffs. V3 Components makes this a little easier by screwing the vans onto the black heat sink shroud, where the black things that looked like caps in previous photos were actually thumb screws.
The TEC uses two power pins from an old drive power connector, while the fans are both spliced together to occupy a single 3-pin-fan header.
A potentiometer controls fan speed via voltage, within a range of around 940 to 1750 RPM. It replaces any of the case’s empty expansion slot brackets.
The fan shroud can now be slipped over the heat sink and secured with thumb screws, and its fans plugged into the fan controller.
Alternatively, builders who prefer thermally-referenced firmware fan control could plug the fans into the motherboard instead. The important thing to note here is that 3-pin fans require voltage-based speed control, rather than relying on the PWM signal. Some motherboards support voltage-based control, others don’t, and many support this older method on some headers but not others.