Intel Optane SSD 900P Review: 3D XPoint Unleashed (Update)

512GB And VROC RAID Performance Testing

Comparison Products

Loading...

In the previous section, we tested the Intel Optane SSD 280GB against products with comparable price points. That meant 1TB-class NVMe SSDs. There aren't any consumer SSDs with price points similar to the Optane SSD 480GB, so we're comparing it to other 512GB-class SSDs.

The Intel 600p and MyDigitalSSD BPX represent the entry-level NVMe class, while the Toshiba RD400 and Plextor M8Pe (the add-in card with a heatsink version) land in the middle of the NVMe performance hierarchy. The Intel SSD 750 and Samsung 950 Pro make up the high-performance tier.

We have also answered your requests for RAID testing with a pair of Intel Optane SSD 900P 480GB drives in a VROC (Virtual RAID On CPU) array.

Intel X299 VROC Settings

Motherboard vendors ruffled a few feathers when they demoed Intel's VROC technology at Computex 2017. The technology brings RAID functionality on-die and allows for bootable NVMe volumes. But some of the arbitrary restrictions, including the requirement to purchase an additional dongle to use RAID 5 or non-Intel SSDs, doesn't mesh well with the enthusiast crowd.

Intel's VROC technology will work out of the box with two Optane SSD 900P drives. Because the drives come from Intel, you don't need to purchase a dongle (you've already paid the Intel tax to get this setup running). VROC only supports RAID 0 or 1 without a dongle, however, so you'll still have to purchase the dongle for RAID 5 support. We only have two drives, so that isn't a big issue--RAID 5 requires a minimum of three drives.

Assembling the VROC array on our Asrock X299 Taichi motherboard wasn't easy. VROC isn't well documented, and we believe Intel rushed it to market. We had to move our video card down to the third PCI Express slot and place our 900P SSDs in the first and fifth slots. That allowed us to check the correct boxes in the UEFI BIOS to build the RAID 0 array.

We used a 128KB data stripe, the VROC default, for the RAID 0 array. This stripe size favors sequential access patterns over random data, but this is an adjustable parameter. If your workloads consist of smaller random accesses, you can adjust the stripe size to a smaller value. Intel's PCH RAID uses a default 16KB stripe size that we often recommend for general computing.

The array came together after we worked out all of the platform limitations and had configured the software. The Optane SSD 900P drives are so fast that any latency penalties due to sub-par RAID scaling will be easy to identify.

Sequential Read Performance

To read about our storage tests in depth, please check out How We Test HDDs And SSDs. We cover four-corner testing on page six of our How We Test guide.

The high-capacity 480GB Optane has the same performance specifications as the 280GB model. The same latency advantages at low queue depths shine through during the sequential read test.

It appears that VROC was not designed with 3D XPoint memory in mind, though. Combining the Optane drives into a RAID 0 array brings QD1 performance down to traditional SSD levels. Even at QD2, the Samsung 950 Pro is slightly faster than the Optane array. The VROC array reaches its peak performance at QD4 with nearly 5,500 MB/s of throughput.

The Samsung 950 Pro has the lowest latency of any NVMe NAND-based SSD. In this chart, you can see the 950 Pro well above the other "normal" SSDs at QD1, but the single 900P 480GB drive beats it easily.

Sequential Write Performance

Two other SSDs challenge Optane's QD1 sequential write speed but adding just one more command into the queue (QD2) is enough for the 3D XPoint technology to take off and leave the others behind.

The VROC array struggles at low queue depths again. We still measured around 600 MB/s at QD1 and 1,500 MB/s at QD2. By QD4, the array again stepped away from the single drives on its way to nearly 4,500 MB/s of throughput. 

Random Read Performance

Optane destroys the normal tendencies we see with NAND-based drives. A single Optane 900P SSD grossly outperforms NAND-based products during random read workloads, particularly at low queue depths. The 900P 480GB achieves nearly 60,000 IOPS at QD1. Before Optane, we would get excited about a 2,000 IOPS increase from one product generation to the next.

VROC erases Optane's QD1 performance advantage. The array's QD1 random read performance falls to just over 10,000 IOPS. At QD2, the array shoots up to just over 76,000 IOPS. That's twice as much performance as the closest NAND-based SSD.

Random Write Performance

We see the same trends with the Intel 900P 480GB that we observed with the smaller model. Peak random write performance is about the same as a premium NAND-based NVMe SSD. It's speedy, but there isn't a huge advantage like we see in the three other corners of performance (random read, sequential read/write). Random write performance is already high with all SSDs, including those tied to a SATA bus.

Premium SATA SSDs deliver roughly 35,000 IOPS of random write performance at QD1. Hard disk drives deliver around 250 IOPS. The VROC array with two Optane SSDs only rises to 9,300 IOPS at QD1. By QD4, the array has caught up to the performance of a single SSD. It's very difficult to build up a queue full of waiting commands with drives this fast, so most of your random writes will occur at very low depths.

80% Mixed Sequential Workload

We describe our mixed workload testing in detail here and describe our steady state tests here.

3D XPoint memory is amazing with mixed workloads. With a relatively low power controller, the 900P gives you ample headroom to tackle complex workloads. Optane technology delivers incredible performance advantages during heavy mixed sequential workloads.

80% Mixed Random Workload

During the mixed random workloads, the Optane drives overcome their middling random write speed. We know that Optane can increase server efficiency by boosting processor utilization, and its no doubt that the 900P delivers massive performance advantages over NAND-based products. The real question is if a desktop user can take advantage of the performance Optane has to offer.

Sequential Steady-State

We wouldn't be surprised to see many consumer Optane 900P SSDs make it into servers, due in part to their very large dose of endurance. Other SSDs lose performance in steady-state conditions, but the 900P doesn't suffer from the same dropoff– it retains its fresh out of the box performance even after we increase the write mixture. These types of intense write workloads cause NAND-based SSDs to fall flat.

Random Steady-State

We used to rave about the Intel SSD 750 series' consistent random write performance in steady state. It still does a very good job, but the 900P literally raises the bar. Given the baby steps we see with flash technology, it could take at least twenty years for it to catch up to Optane if it ever does at all.

PCMark 8 Real-World Software Performance

For details on our real-world software performance testing, please click here.

Just like on the previous page, the 900P 480GB wins or ties every application launch test. Also, like the 280GB model, the other drives are not far behind in these low-intensity workloads.

Application Storage Bandwidth

Viewing the PCMark 8 results as average throughput is a good way to gauge the systems' effectiveness. The Optane 900P basically doubles the throughput performance of the 950 Pro 512GB NVMe SSD, but that doesn't equate to twice the application loading speed. This test highlights how the operating system and today's applications can't take full advantage of next-gen memories. That ultimately restricts performance gains with Optane.

PCMark 8 Advanced Workload Performance

To learn how we test advanced workload performance, please click here.

Filling the drives with data and then running extended write workloads pushes them into a worst-case steady state, thus bringing NAND-based SSDs to their knees. Optane SSDs don't have an issue with the amount of data on the drive or workload duration.

VROC's performance is disappointing. At the very least we expected to see parity between a single Optane 900P SSD and the VROC array, but the single drive delivers much more performance in desktop applications than the array. We've yet to see true hardware RAID for NVMe, such as with a standard RAID adapter. Most NVMe RAID implementations are "soft RAID," meaning they are implemented in software in the operating system rather than through dedicated hardware components.

In contrast, VROC offloads RAID calculations directly to the processor, so it does consume CPU cycles. That means the feature competes for processor cycles with your applications. There currently aren't any hardware NVMe RAID controllers, which offload computation overhead entirely, though some have been announced. We can't help but wonder how they will compare.

Total Service Time

You need to look close to find the two Optane 900P 480GB drives because the service time for the workloads is so low. The drives are barely working during desktop workloads.

Disk Busy Time

The disk busy time test measures how long the drives work to complete tasks. This is in contrast to the previous set of charts that shows how long it took to complete the tasks. The performance advantage is lost in the operating system, application, and file system.

MORE: Best SSDs

MORE: How We Test HDDs And SSDs

MORE: All SSD Content

This thread is closed for comments
76 comments
    Your comment
  • Aspiring techie
    If Intel would have properly implemented NVMe raid, imagine what would happen if you put 8 of these in RAID 0.
  • hdmark
    Can someone comment on the statement "your shiny new operating system was designed to run on an old hard disk drive. "? I somewhat understand it, but what does that mean in this case? If microsoft wanted... could they rewrite windows to perform better on an SSD or optane? Obviously they wont until there are literally no HDD's on the market anymore due to compatibility issues but I just wasnt sure what changes could be made to improve performance for these faster drives.
  • AgentLozen
    Thanks for the review. I have a couple questions if you don't mind answering them.

    1. Is PCI-e 3.0 a bottleneck for Optane drives (or even flash in general). If solid state drive developers built PCI-e 4.0 drives today, would they scale to 2x the performance of modern 3.0 drives assuming there were compatible motherboards?

    2. Can someone explain what queue depth is and under what circumstances it's most important? The benchmarks show WILD differences in performance at various queue depths. Does it matter that flash based drives catch up at greater queue depths? Is QD1 the most important measurement to desktop users?

    3. In the service time benchmarks, it seems like there is no difference between drives in World of Warcraft, Battlefield 3, Adobe Photoshop, Indesign, After Effects. Sequential and Random Read and Write conclude "Optane is WAAAAY better" but the application service time concludes "there's no difference". Is it even worth investing in an Intel Optane drive if you won't see a difference in real world performance?
  • AndrewJacksonZA
    This...

    I mean...

    This is just...

    .
    .
    .
    I want one. I want ten!!!


    Also, "Where Is VROC?" listed as a con? Hehe, I like how you're thinking. :-)
  • dudmont
    1913428 said:
    Can someone comment on the statement "your shiny new operating system was designed to run on an old hard disk drive. "? I somewhat understand it, but what does that mean in this case? If microsoft wanted... could they rewrite windows to perform better on an SSD or optane? Obviously they wont until there are literally no HDD's on the market anymore due to compatibility issues but I just wasnt sure what changes could be made to improve performance for these faster drives.


    Simplest way to answer is the term, "lowest common denominator". They(MS) designed 10 to be as smooth and fast as a standard old platter HD could run it, not a RAID array(which a SSD is basically a NAND raid array), or even better an XPoint raid array. Short queue depths(think of data movement as people standing in line) were what Windows is designed for, cause platter drives can't do more data movements than the number of heads on all the platters combined without the queue(people in line) growing, and thus slowing things down. In short, old platter drives can slowly handle like 8-20 lines of people, before they start to clog up, while nand, can quickly handle many lines of people(how many lines depends on the controller and the number of nand packages). Admittedly, it may not be the best answer, but it's how I visualize it in my head.
  • hdmark
    1919666 said:
    1913428 said:
    Can someone comment on the statement "your shiny new operating system was designed to run on an old hard disk drive. "? I somewhat understand it, but what does that mean in this case? If microsoft wanted... could they rewrite windows to perform better on an SSD or optane? Obviously they wont until there are literally no HDD's on the market anymore due to compatibility issues but I just wasnt sure what changes could be made to improve performance for these faster drives.
    Simplest way to answer is the term, "lowest common denominator". They(MS) designed 10 to be as smooth and fast as a standard old platter HD could run it, not a RAID array(which a SSD is basically a NAND raid array), or even better an XPoint raid array. Short queue depths(think of data movement as people standing in line) were what Windows is designed for, cause platter drives can't do more data movements than the number of heads on all the platters combined without the queue(people in line) growing, and thus slowing things down. In short, old platter drives can slowly handle like 8-20 lines of people, before they start to clog up, while nand, can quickly handle many lines of people(how many lines depends on the controller and the number of nand packages). Admittedly, it may not be the best answer, but it's how I visualize it in my head.


    That helps a lot actually! thank you!
  • WyomingKnott
    Queue depth can be simplified to how many operations can be started but not completed at the same time. It tends to stay low for consumer applications, and get higher if you are running many virtualized servers or heavy database access.

    With spinning metal disks, the main advantage was that the drive could re-order the queued requests to reduce total seek and latency at higher queue depths. With NMMe the possible queue size increased many-fold (weasel words for I don't know how much), and I have no idea why they provide a benefit for actually random-access memory.
  • TMTOWTSAC
    1913428 said:
    Can someone comment on the statement "your shiny new operating system was designed to run on an old hard disk drive. "? I somewhat understand it, but what does that mean in this case? If microsoft wanted... could they rewrite windows to perform better on an SSD or optane? Obviously they wont until there are literally no HDD's on the market anymore due to compatibility issues but I just wasnt sure what changes could be made to improve performance for these faster drives.


    Off the top of my head, the entire caching structure and methodology. Right now, the number one job of any cache is to avoid accessing the hard drive during computation. As soon as that happens, your billions of cycles per second CPU is stuck waiting behind your hundredths of a second hard drive access and multiple second transfer speed. This penalty is tens of orders of magnitude greater than anything else, branch misprediction, in-order stalls, etc. So anytime you have a choice between coding your cache for greater speed (like filling it completely to speed up just one program) vs avoiding a cache miss (reserving space for other programs that might be accessed), you have to weigh it against that enormous penalty.
  • samer.forums
    where is the power usage test ? I can see a HUGE heatsink on that monster , and I want the Wattage of this card compared to other PLEASE.

    This SSD cant be made M2 card . so Samsung 960 pro has a huge advantage over it.
  • dbrees
    A lot of the charts that show these massive performance gains are captioned that this is theoretical bandwidth which is not seen in actual usage due to the limitations of the OS. I get it, it's very cool, but if the OS is the bottleneck, no one in the consumer space would see a benefit, especially since NVMe RAID is still not fully developed. If I am wrong, please correct me.
  • JohnnyLucky
    Chris - I clicked on the Tom's Hardware link to the newegg page. The specifications are showing PCIe 4.0. I know the new PCIe 4.0 standard has been approved and that we will see PCIe 4.0 products this time next year. Any chance the 900P is PCIe 4.0 ready or is it just a mistake?
  • CRamseyer
    128213 said:
    Chris - I clicked on the Tom's Hardware link to the newegg page. The specifications are showing PCIe 4.0. I know the new PCIe 4.0 standard has been approved and that we will see PCIe 4.0 products this time next year. Any chance the 900P is PCIe 4.0 ready or is it just a mistake?


    We were told 24 hours before the review that it is PCIe 3.0 X4. I'm not sure where the 4.0 info comes from but more than one seller has it listed.
  • Rob Burns
    I have to admit I get confused by what all the different tests would mean to my day to day experience. The biggest issue for me is saving large 3D and Photoshop files. Some of my files are over 1GB and take a long time to save. Since software crashes occur I need to save frequently and each time I do this it creates a serious interruption in the workflow. Which of the tests best represents the speed of saving a single, massive file? I've heard many times people say that upgrading from an HDD to and SSD didn't really change the speed of saving files. Is this type of save bottlenecked by the CPU or something else? If someone could shed some light on this it would be much appreciated.
  • DavidC1
    888385 said:
    A lot of the charts that show these massive performance gains are captioned that this is theoretical bandwidth which is not seen in actual usage due to the limitations of the OS. I get it, it's very cool, but if the OS is the bottleneck, no one in the consumer space would see a benefit, especially since NVMe RAID is still not fully developed. If I am wrong, please correct me.


    That's not entirely true. People will benefit. It's still faster than NAND SSDs in everyday scenarios, just the amount you notice big increases are decreasing.

    First, NVMe RAID sucks, especially for Optane. RAID adds software-induced latency and the point of these drives are low latency. You reduce some of the gains by RAID-ing it.

    Optane SSD
    -No need for TRIM. TRIM is a requirement for non-Optane SSDs because the media is slow and TRIM, extremely roughly speaking is like defrag for SSDs
    -SSDs slow down drastically when drive is full. Not with Optane.
    -SSDs slow down when it's "dirty". That's every time when the drive is loaded and has no time to TRIM, or the demand is high that controller and the buffer gets overloaded. Not with Optane
    -If you just erased large amount of files, you'll see stuttering with SSDs. Not with Optane

    Not to mention when you are transferring or working with numerous small files, the speed advantages of Optane will be enormous.

    With games and applications the benefits will vary because some applications are CPU-bound, and some portions of code can't be accelerated much because other parts of code have fixed loading times. For example, you can't make ads disappear faster by having a faster drive.

    Whether it's worth the price of Optane? That depends on you. I think for most users its not. For users that want to just get the fastest system, not having an Optane SSD will be kinda strange. I mean, I expected $1000+ for 480GB. At $380 plenty of enthusiast systems can get the 280GB version.
  • takeshi7
    It's obvious that once an SSD is installed in a system, the game loading times become CPU and/or RAM bottlenecked, not storage bottlenecked. That's why these fancy NVMe SSDs barely load games faster than budget SATA SSDs. Can Tom's Hardware please start testing how different CPU platforms/architectures affect game load times? I bet an i7 8700k with a budget SATA SSD will load World of Warcraft much faster than an FX 8350 with this Intel 900p.
  • MichaelElfial
    2020099 said:
    1913428 said:
    Can someone comment on the statement "your shiny new operating system was designed to run on an old hard disk drive. "? I somewhat understand it, but what does that mean in this case? If microsoft wanted... could they rewrite windows to perform better on an SSD or optane? Obviously they wont until there are literally no HDD's on the market anymore due to compatibility issues but I just wasnt sure what changes could be made to improve performance for these faster drives.
    Off the top of my head, the entire caching structure and methodology. Right now, the number one job of any cache is to avoid accessing the hard drive during computation. As soon as that happens, your billions of cycles per second CPU is stuck waiting behind your hundredths of a second hard drive access and multiple second transfer speed. This penalty is tens of orders of magnitude greater than anything else, branch misprediction, in-order stalls, etc. So anytime you have a choice between coding your cache for greater speed (like filling it completely to speed up just one program) vs avoiding a cache miss (reserving space for other programs that might be accessed), you have to weigh it against that enormous penalty.


    Yeah, basically the operating system are limited to fast operative memory and slow storage for historical reasons. Now, the storage is fast enough to make feasible its usage in more RAM-like manner. A good example would be the file mapping features available in every modern OS. With slow storage this needs copying to RAM of chunks of the file and making that piece available at certain address. With much faster storage you can skip the RAM entirely. If you start thinking in that direction it seems quite interesting to develop a 3-d kind of storage support in the operating systems. Like the file mapping there are a number of existing OS features that can benefit directly and become the actual parts of the OS that are clients to this 3-d kind of storage.... Well, I mean that when you think of it, we already have enough constructs in the modern operating systems to handle this and we can expect more efficient methods rather sooner than later - no major redesign will be required to feel the benefits.
  • takeshi7
    Since Optane doesn't require TRIM or garbage collection it would be cool to see some non-AHCI SATA 1 drives or maybe even PATA/Compactflash cards that use it. It would be great for older computers that don't have TRIM and want solid state performance without degradation. I know it will never happen, but I can dream.

    Edit: Or even just a SATA 3 version that I can put in my PS4, since PS4 Pro has SATA 3, but doesn't support TRIM.
  • Snipergod87
    1481619 said:
    Since Optane doesn't require TRIM or garbage collection it would be cool to see some non-AHCI SATA 1 drives or maybe even PATA/Compactflash cards that use it. It would be great for older computers that don't have TRIM and want solid state performance without degradation. I know it will never happen, but I can dream. Edit: Or even just a SATA 3 version that I can put in my PS4, since PS4 Pro has SATA 3, but doesn't support TRIM.


    As you stated that wont happen, going to SATA would incur a big performance hit and increase latency hugely compared to NVMe. Just get a SSD for yoru PS4 that has internal garbage collection capability's (most do) so you don't have to rely on TRIM.
  • takeshi7
    248497 said:
    1481619 said:
    Since Optane doesn't require TRIM or garbage collection it would be cool to see some non-AHCI SATA 1 drives or maybe even PATA/Compactflash cards that use it. It would be great for older computers that don't have TRIM and want solid state performance without degradation. I know it will never happen, but I can dream. Edit: Or even just a SATA 3 version that I can put in my PS4, since PS4 Pro has SATA 3, but doesn't support TRIM.
    As you stated that wont happen, going to SATA would incur a big performance hit and increase latency hugely compared to NVMe. Just get a SSD for yoru PS4 that has internal garbage collection capability's (most do) so you don't have to rely on TRIM.

    That internal garbage collection doesn't work. The data has to be overwritten with zeroes for the internal garbage collection to think the data has been cleared. Most OS's just delete the pointer to the file in the file system, but don't actually overwrite the data, so even if I delete all the games off of my PS4's SSD, the SSD still thinks it's full and can't do garbage collection. And yes the SATA interface would have higher latency, but maybe high latency lower binned chips could be used or something.
  • mtwolters8604
    Question is, does this SSD work with a ASUS z170 pro-gaming Mobo. Asus and Intel support could not confirm it.... I am worried.
  • alithegreat
    Can we disable the auto playing 2 hour long videos, please?
  • mdd1963
    Will need to see some more comparisons, but, I was expecting peak numbers to be much better than 2500 MB/sec reads.....; my damn 960 EVO will do 3,200 MB/sec sequential reads...
  • chalabam
    RAID!, RAID!, RAID!, RAID!, RAID!, RAID!, RAID!, RAID!, RAID!, RAID!
  • DavidC1
    46152 said:
    Will need to see some more comparisons, but, I was expecting peak numbers to be much better than 2500 MB/sec reads.....; my damn 960 EVO will do 3,200 MB/sec sequential reads...


    So what? Look at the sequential results. Optane with "just" 2500MB/s reads beat the 960 with 3200MB/s reads in the most important QD1-4 depth.

    Vast, vast majority of consumer usage, including games are on QD1-4. That's just sequential. When you do small file transfer it will kick any NAND SSDs, including the 960 EVO to a pulp.