Intel Xeon E5-2600 v4 Broadwell-EP Review

Additional Benchmarks

Sysbench CPU

Sysbench is a widely used suite that characterizes CPU, memory, file I/O, mutex performance and MySQL performance. We focus on the CPU test, which measures the amount of time required to verify prime numbers in both single- and multi-threaded workloads.

Both Xeon E5-2697 v4-powered servers provide impressive performance, beating most of the competition in the threaded component of this test. But Intel's -2699 v3 spoils the party by reporting a slightly faster result. The v4s fire back, overtaking the Xeon E5-2699 v3 in single-threaded performance, even besting the E5-2643 v3 as well.

Stream

Stream is a relatively simple test developed by Dr. John D. McCalpin. It measures the sustainable memory throughput of a given system in MB/s.

The Intel validation server employs speedy SK hynix DDR4-2400. As such, it leads our bandwidth results. The Xeon E5-2699 v3 employs dual memory controllers, which apparently are not as efficient as what Broadwell-EP brings to bear. They trail, even though they are tested on the same Intel motherboard.

We also tested the Xeon E5-2643 v3 on this board, and it trails significantly. The eight-core die only employs one memory controller, which just can't keep up.

C-Ray 1.1

C-Ray is a raytracing benchmark designed to reside entirely inside of the CPU caches, thus eliminating RAM and disk I/O overhead during the measurement window. The test focuses purely on floating-point performance during rendering and runs on multiple threads.

The -2697 v4s and -2699 v3 are locked in a three-way tie for the lead, while the second-generation E5s fall to the rear. Because this test scales well across multiple threads, the eight-core Xeon E5-2643 v3 is quickly outclassed, despite high clock rates.

7-Zip

7-Zip is open source software that measures compression and decompression performance, which can be a key capability for storage and networking applications.

The only surprise during this test is just how well the 18-core v4s fare compared to the Xeon E5-2699 v3. Meanwhile, all of the second-gen E5s we tested fare dismally, illustrating the benefits of a more modern platform. Most enterprises will be upgrading from Sandy/Ivy Bridge to Broadwell, and this benchmark does a good job of highlighting the type of performance boost to expect.

HardInfo

HardInfo provides granular system information, and includes a suite of six benchmarks that measure CPU performance. It's easily accessible and comes as a standard component in many Ubuntu desktop systems. We include these tests because they allow our Linux brethren to easily run comparative benchmarks.

The v4s lead in FPU raytracing, but fall behind their predecessors in the Fibonacci test. This generational face-off gets a little more heated during the FPU FTT tests, and the Xeon E5-2687 v4 in Intel's development platform dominates the Cryptohash test.

This thread is closed for comments
22 comments
    Your comment
  • utroz
    Hmm well we know that Broadwell-E chips must be coming very very soon if Intel let this info out.
  • bit_user
    Wasn't there supposed to be a 4-core 5.0 GHz SKU? Single-thread performance still matters, in many cases.
  • turkey3_scratch
    328798 said:
    Wasn't there supposed to be a 4-core 5.0 GHz SKU? Single-thread performance still matters, in many cases.


    In most server applications it doesn't matter as much as multithreaded performance. If you need single-core strength, getting a consumer chip is actually better, but you probably aren't running a server if single-threaded is your focus.
  • PaulyAlcorn
    Quote:
    Wasn't there supposed to be a 4-core 5.0 GHz SKU? Single-thread performance still matters, in many cases.

    I read the rumors on that as well, but nothing official has surfaced as of yet to my knowledge.
  • bit_user
    1712875 said:
    328798 said:
    Wasn't there supposed to be a 4-core 5.0 GHz SKU? Single-thread performance still matters, in many cases.
    In most server applications it doesn't matter as much as multithreaded performance. If you need single-core strength, getting a consumer chip is actually better, but you probably aren't running a server if single-threaded is your focus.
    Try telling that to high-frequency traders. I'm sure they want the reliability features of Xeons (ECC, for example), but the highest clock speed available.

    And the fact that Intel even released low-core high-clock SKUs is an acknowledgement of this continuing need. Clock just not as high as I'd read. With the other specs basically matching the Haswell version, the only difference is ~5% IPC improvement. Seems pretty poor improvement, for a die-shrink.
  • firefoxx04
    Would nice to have a quad core xeon that turbos at 4.4ghz just like the 4790k. I had to go with a 4690k when building an autocad system because it only uses one core and needs that core to be fast... this means i have to sacrifice ecc support.
  • bit_user
    2074532 said:
    Quote:
    Wasn't there supposed to be a 4-core 5.0 GHz SKU? Single-thread performance still matters, in many cases.
    I read the rumors on that as well, but nothing official has surfaced as of yet to my knowledge.

    On wccftech (not the most reliable source, I know), they claimed:

    Model: Intel Xeon E5-2602 V4
    Cores/threads: 4/8
    Base clock: 5.1 GHz
    Turbo clock: TBD
    L3 Cache: 5 MB
    TDP: 165W

    Given what we know about 2.5 MB/core of L3 Cache, the 5 MB figure sounds suspicious. It's conceivable they could disable some to hit the target TDP, I guess.
  • firefoxx04
    We cant get skylake to consistently hit 5ghz... why would a xeon chip suddenly hit 5ghz?
  • JamesSneed
    211300 said:
    We cant get skylake to consistently hit 5ghz... why would a xeon chip suddenly hit 5ghz?


    I'm not saying the 5Ghz rumor is true but Intel has always known which chips can hit higher clocks during certification if the chip is a top end or low end chip cores disabled etc. I'm sure they could cherry pick a few to sell for $$$ if they wanted. Now are they I have no real idea.
  • bit_user
    211300 said:
    We cant get skylake to consistently hit 5ghz... why would a xeon chip suddenly hit 5ghz?
    Well, I was surprised, too.

    There are obviously things you can do in chip design that allow one to reach different timing targets. And I was hoping they might've refined their 14 nm process, since the time the first Broadwells launched. So, I thought, with more TDP headroom afforded by this socket (roughly double what Skylake has to work with), maybe they could do it.

    I thought maybe Intel was addressing some pent-up demand for high clockspeed applications. That said, it seemed particularly odd in Broadwell, given that it generally seems oriented towards lower clockspeed / lower power applications.

    But maybe it was a typo, or even a blatant lie, in order to track down leakers.
  • alidan
    Quote:
    We cant get skylake to consistently hit 5ghz... why would a xeon chip suddenly hit 5ghz?


    proper binning and sold specifically as that because of what it hits, this could double/triple the value of the chip at least compared to other lower binned versions.
  • thor220
    Quote:
    Wasn't there supposed to be a 4-core 5.0 GHz SKU? Single-thread performance still matters, in many cases.


    A really high clock on a server platform seems like an overclocker's dream to me. Stability and performance. Not to mention that server processors use solder instead of that cheap paste Intel uses in their consumer processors.
  • RedJaron
    Doesn't sound right to me. A server chip binned that high would be ridiculously expensive, more than even the 5960X. I can't see then selling more than a couple hundred to the richest and most eccentric computer enthusiasts.
  • LudeMasta99
    How many FPS will I get in Crysis with this?
  • Adriano Bordignon
    How does Photoshop behave under this cpu?
  • bit_user
    570460 said:
    Doesn't sound right to me. A server chip binned that high would be ridiculously expensive, more than even the 5960X. I can't see then selling more than a couple hundred to the richest and most eccentric computer enthusiasts.
    FWIW, IBM introduced Power6 processors in 2007 & 2009 that were clocked up to 5 GHz. No doubt, they cost an arm and a couple legs.
  • Waldek
    Slightly off the topic, but... I was curious about the data centers' power consumption statistics. The article says 416.2 TWh per year. This is true. What the article says incorrectly, however, is that it would be more than 182 countries (of 192). The correct example would be that this gives the datacenters of the world 11th place in the power consumption ranking in the world. For example, the UK alone consumes 320 TWh (and is currently number 11 worldwide). The datacenters consume currently ca. 5% of the world's power usage...
  • sincreator
    Getting a chip to hit 5.0ghz or more stable is pretty rare to say the least. Silicon Lottery https://siliconlottery.com/collections/2011-3 specializes in picking out binned chips to sell, and they don't even have one model that is clocked that high.
  • PaulyAlcorn
    Quote:
    Slightly off the topic, but... I was curious about the data centers' power consumption statistics. The article says 416.2 TWh per year. This is true. What the article says incorrectly, however, is that it would be more than 182 countries (of 192). The correct example would be that this gives the datacenters of the world 11th place in the power consumption ranking in the world. For example, the UK alone consumes 320 TWh (and is currently number 11 worldwide). The datacenters consume currently ca. 5% of the world's power usage...


    The article does not state that it is more than the *combined* total of 182 countries, merely that it consumes more power than each of them compared individually. You are right,mentioning that it would place 11th in the world is probably a better way of stating the statistic.
  • bit_user
    248772 said:
    Getting a chip to hit 5.0ghz or more stable is pretty rare to say the least. Silicon Lottery https://siliconlottery.com/collections/2011-3 specializes in picking out binned chips to sell, and they don't even have one model that is clocked that high.
    Sure, but there's a difference between binning chips designed to run at a lower clock vs. actually designing a chip to hit higher clock speeds. There's no reason Intel can't make chips that clock higher, but they don't choose to because they think there's not sufficient market demand for something which burns so much power. AMD tried this with 225 W TDP Bulldozers, a few years back.

    I remember reading that the Pentium 4 was originally designed to scale up to 10 GHz, by the end of its production. Of course, back then, the only way they could hit those speeds was to use really long pipelines composed of very simple stages. Then, when they discovered that leakage of newer process nodes was higher than anticipated, they were left with a very inefficient architecture that was stuck below the clock speeds that would've made it competitive.

    These days, I think Intel could do it without such a drastic architectural tradeoff. But it still comes down to a power vs. clock, no matter what.
  • utroz
    328798 said:
    570460 said:
    Doesn't sound right to me. A server chip binned that high would be ridiculously expensive, more than even the 5960X. I can't see then selling more than a couple hundred to the richest and most eccentric computer enthusiasts.
    FWIW, IBM introduced Power6 processors in 2007 & 2009 that were clocked up to 5 GHz. No doubt, they cost an arm and a couple legs.


    Those IBM chips had a really long pipeline to allow clock speeds that high as well as an SOI process node basically built from the ground up for them. I wonder what version of 14nm Intel is using for Broadwell-E/EP/EX as I know they had one version they used for the Broadwell-U,Y,H,DT(C) and when they moved to Skylake they used an updated version of 14nm. Is it possible that Broadwell_E/EP/EX are using the updated 14nm process?
  • pastorpastor
    nice review, but I'm deceived, there is no important 3d rendering benchmarks like cinebench 3dsmax / VRAY