Supermicro And NVMe RAID Testing: 3 Million IOPS And 21 GB/s
Supermicro SuperServer SYS-1028U-TN10RT+
We already had the slender 1U Supermicro SuperServer SYS-1028U-TN10RT+ in our enterprise storage lab, so after a quick BIOS update we slapped in the Xeon E5-2679 v4 CPUs and went to work.
Don't let its diminutive stature fool you; the SuperServer is a little powerhouse. It features 10 hot-swap NVMe bays that we populated with ten 400GB 2.5" Intel DC P3700 SSDs. Normally, 16 counter-rotating fans provide copious airflow over 24 Samsung 16GB DDR4-2133 ECC DIMMs, but we removed 16 of them to level the playing field. Even with 384GB of DDR4 at our disposal, we are not populating the server to capacity; it supports an amazing 1.5TB of DDR4 ECC LRDIMMs.
The NVMe SSDs mate to the PCIe backplane, which Supermicro routes to a pair of switchless expansion cards in the rear. These cards provide direct PCIe 3.0 x4 connections to the CPU, enabling incredible performance. The back of the chassis features two 10GbE ports and one management port, along with dual Titanium-rated 1000W redundant power supplies.
Need a slice of parallel processing in the storage sandwich? You also get three auxiliary eight-pin power connectors, allowing the server to accommodate either two full-height full-length graphics cards, or one double-width board and a low-profile offering.
We configured the 10 Intel NVMe SSDs into a RAID 0 volume (mdadm) in CentOS 7, demonstrating how the E5 2697 v4's 36 threads come into play under heavy I/O operations. The colored spaghetti strings in the picture above indicate the load of each core during a 32-thread 4KB random read workload.
Incredibly, we're pushing just over 3 million IOPS during this capture with an aggregate CPU utilization of 90.9 percent. To put that into perspective, you're seeing nearly 12 GB/s of random throughput. Now you see why very fast multi-core CPUs are so important to extracting maximum performance from NVMe-based SSDs in servers.
These results are hard to beat; we recently took 64 of the fastest PCIe SSDs out for a spin in 64 PCIe SSDs, 120TB Of Flash And One Stop Systems: The FSA 200 Review. The FAS 200 topped out with 3,055,735 IOPS in a system that monopolizes 5U of rack space. Meanwhile, the 1U Supermicro server musters even more random read performance thanks to its switchless design. We reach 814,351 IOPS during the 4KB random write workload, which is excellent scaling considering that Intel specs each drive at 75,000 random write IOPS.
The SuperServer continues to impress with a beastly 21 GB/s of sequential read throughput (yes, gigabytes), easily surpassing the 13 GB/s we achieved with the FAS 200.
It is hard not to like this much power packed into such a small footprint; it's the personification of both performance and storage density. Now that we have seen what Intel's current-gen SSDs can do, let's take a look at the next generation.