Transcend SSD340 256 GB Review: Now With JMicron Inside

Results: PCMark 8 Storage Consistency Testing

Futuremark's PCMark 8 expanded storage tests are awesome. With so much data and a comprehensive testing regimen, we can really drill down on drive performance.

First, the raw block device (there is no partition) is preconditioned twice by filling the entire accessible LBA space with 128 KB sequential writes. Once that is completed, the first Degradation Phase randomly writes blocks between 4 KB and 1 MB in size to random LBA spaces on the drive. Since the writes aren't 4 KB-aligned much of the time, the SSD's performance drops quickly. After all, non-4 KB-aligned accesses create overhead and generally increase write amplification significantly.

The first Degradation Phase begins with 10 minutes of those punishing random offset writes, after which each PCMark 8 activity trace is played against the SSD being tested. The successive degradation rounds are similar, except an additional five minutes are tacked onto each iteration. After eight repetitions, that write period expands to 45 minutes.

Next comes the Steady Phase. Each of five Steady Phases writes 45 minutes worth of random offset data prior to trace playback, pushing the drive even harder and making it more difficult to perform housekeeping duties. With fewer blocks available for writing, latency increases substantially.

Lastly, PCMark 8 moves into a Recovery Phase, which consists of five idle minutes before trace playback. Repeat that five times, and the test concludes.

For more information on the test and how it works, check out a more in-depth description, check out the Plextor M6e 256 GB PCI Express SSD Review: M.2 For Your Desktop.

Storage Consistency With PCMark 8's Adobe Photoshop (Heavy) Trace

Because there are 18 individual rounds packed with 10 traces each, we need to focus. We'll choose one trace, Adobe Photoshop (Heavy), and keep tabs on it through the entire extended run.

Bandwidth

A few pages ago, I mentioned that the lack of additional over-provisioning on Transcend's SSD340 was going to hurt it. Well, this is where we see the pain first. The JMicron-powered drive just doesn't get much of a bandwidth boost in the later Recovery phases. In fact, it's only slightly faster than it was in the Degrade phases.

Of course, that's disappointing, though, given what we saw on page five, the numbers make sense. At least the SSD340 beats the more expensive Plextor M6M.

Latency

In this test, we're taking that same Adobe Photoshop (Heavy) trace and using average read and write latency to illustrate responsiveness. We'll sprinkle in some competing drives for comparison, too.

The Tom's Hardware Storage Bench trace test on the previous page made it clear that Transcend's SSD340 encounters higher read service times than competing solutions. We see the same behavior yet again.

Write latency falls in line with some of the other drives we're using for comparison. That L85A flash doesn't do JMicron's JMF667H any favors.

Best and Worst Score Reference

TOPICS
  • blackmagnum
    A lot of new SSDs lately on Tom's. Where are the DDR4 SDRAM reviews?
    Reply
  • leo2kp
    Should the Sequential chart be in MB/s instead of IOPS?
    Reply
  • leo2kp
    Should the Sequential chart be in MB/s instead of IOPS?
    Reply
  • leo2kp
    Ugh duplicate. Sry ><
    Reply
  • anthony8989
    Great article, much appreciated!

    In the conclusion you put:
    the M500 has one feature the SSD340 lacks: TCG Opal 2.0 and Microsoft eDrive support


    That would be two features!
    Reply
  • Tanquen
    "There's a good chance you won't notice the difference between a fast SATA 6Gb/s SSD and something plugged into M.2. And this is from a guy who tests SSDs all day, every day."

    There is a good chance you won’t notice the difference between a “fast” SSD and a hard disk in the day to day life of a PC.
    Reply
  • user 18
    13822529 said:
    "There's a good chance you won't notice the difference between a fast SATA 6Gb/s SSD and something plugged into M.2. And this is from a guy who tests SSDs all day, every day."

    There is a good chance you won’t notice the difference between a “fast” SSD and a hard disk in the day to day life of a PC.

    I don't think that's accurate. I have two otherwise-identical laptops, one with an SSD for its boot drive and one with a HDD. The one with the SSD is hands down faster in program launches, file opening, and other read/write tasks.

    I've also compared fresh installs of multiple OSs (Windows 7, Linux Mint 16, Ubuntu 14.04) between hard drive and SSD, as well as comparing them to my old Windows 7 install on a relatively slow SSD, and none of the fresh installs on hard drives even came close in speed to the old and bloated install on the SSD.

    I'm sorry that you haven't experienced the difference between a SSD and a HDD, I do truly believe it is the single most important upgrade one can make to their PC.
    Reply
  • Tanquen
    13822633 said:
    13822529 said:
    "There's a good chance you won't notice the difference between a fast SATA 6Gb/s SSD and something plugged into M.2. And this is from a guy who tests SSDs all day, every day."

    There is a good chance you won’t notice the difference between a “fast” SSD and a hard disk in the day to day life of a PC.

    I don't think that's accurate. I have two otherwise-identical laptops, one with an SSD for its boot drive and one with a HDD. The one with the SSD is hands down faster in program launches, file opening, and other read/write tasks.

    I've also compared fresh installs of multiple OSs (Windows 7, Linux Mint 16, Ubuntu 14.04) between hard drive and SSD, as well as comparing them to my old Windows 7 install on a relatively slow SSD, and none of the fresh installs on hard drives even came close in speed to the old and bloated install on the SSD.

    I'm sorry that you haven't experienced the difference between a SSD and a HDD, I do truly believe it is the single most important upgrade one can make to their PC.

    Lots of upgrades can be important depending where you are at with each component. If you have a slow low power 2.5” hard disk in your laptop then an SSD can help. But I’m looking at all other things being equal and SSDs just don’t help that much when you have a fast 3.5” HD. When I compare the same tasks on my old PC with a HD that has a good 150MB+ read write speed and other than benchmarking the Windows boot time and a few large apps starting up it just not a big deal. Even then you have to clock it and see that it took 30 seconds and not 38. In my day to day work I just don’t notice. You have to set there and clock the Windows startup time. Are my work VMware sessions any faster, do my games start any faster? No, not really. I have even played around with a 50GB RAM drive with 3000MB+ read/write speeds and my games and VMware sessions are just about the same. Windows and the apps are waiting on other things and the bottleneck is just moved elsewhere. All my games are on my supper fast 400MB+ SSD and when my friend comes over he plays on my poor old HD base PC with slower RAM and slower CPU and a slower GPU and all the different games we play together I load the games maybe a few seconds before he does and with some games there is no difference.
    Reply
  • nekromobo
    Tanguen thats because your slow machine isn't loading the full size textures, meches and running the game on maxed settings. Can't you just think about it before talking from your *!#.

    Your almost never going to be doing sequential write/read for 150MB+ on a HDD and that random read/write will just kill that speed.
    Reply