Xeon E5-2600 v3 Platform Introduction
Today marks the launch of Intel's Xeon E5-2600 v3 processor family, based on the Haswell-EP design. We knew this day was coming, since the company already introduced its Haswell-E-based Core i7s. Of course, the Xeon family is Intel's mainstream server/workstation processor family, and the E5-2600 series is perhaps the highest volume line-up in the Xeon portfolio. It is also responsible for forcing AMD's Opteron 4000 and 6000 CPUs into relative submission. Now, the competition is refocusing efforts on low-end ARM-based processors.
The dual-socket server market is absolutely huge. So, any major technology refresh in the segment triggers billions of dollars in refresh purchases. HP already announced its new ProLiant Generation 9 servers and other vendors will roll out their own implementations starting today. Most server systems have a field life of three to five years. It follows, then, that Haswell-EP-based processors will replace platforms built on Nehalem-EP, Westmere-EP, and Sandy Bridge-EP. And unlike most desktop PCs, every dual-socket server can easily cost many thousand dollars.
As you are undoubtedly aware, there are three distinct lines under the Xeon banner. These E5s represent Intel's mid-range platform. The E3s more closely align with mainstream desktop core configurations, while the E7 tier is higher-end, scaling up to eight processors, many terabytes of system memory, and enabling RAS features for mission-critical applications. The E5 is a utility player of sorts, handling everything from heavily virtualized workloads to bare metal HPC applications. The "2" in the part number lets us know that we're looking at single- and dual-socket-capable parts. The "6" immediately following loses some of its meaning this time around. Previously, Sandy Bridge-EP- and Ivy Bridge-EP-based processors were also available as Xeon E5-2400s, which weren't as fully-featured. There is no Xeon E5-2400 v3 this time around, though. As of now, the E5s are 2600-series chips.
With Sandy Bridge-EP (Xeon E5-2600), we saw as many as eight cores manufactured using a 32 nm process. Ivy Bridge-EP (Xeon E5-2600 v2) benefited from a process shrink to 22 nm, enabling core counts as high as 12. Haswell-EP (Xeon E5-2600 v3) is being productized in configurations as wide as 18 cores. Each generation follows the core design and incorporates much of the technology that we see with the aligned consumer segment. That means, with Haswell-EP, voltage regulation circuitry moves on-package instead of residing on the motherboard. Another major change (already seen on the desktop) is Haswell-EP's LGA 2011-3 interface, which is not compatible with Sandy Bridge-EP, Ivy Bridge-EP, or the new Ivy Bright-EX's 2011-pin socket. The new interface facilitates DDR4 memory compatibility, delivering lower power, more density, and higher data rates than previous generations.
Here is a quick overview of the different model differences in the Intel Xeon E5-2600 v3 generation:
Clearly, the number of SKUs is massive. Intel tells us that three dies are used to create all of these different CPU models. Remember, many of the systems Haswell-EP will replace currently employ Westmere-EP, which allowed up to two sockets with six cores each. Common DDR3 data rates were 1066 and 1333 MT/s. Updating to Xeon E5-2600 v2 makes it possible to put two to three times as many cores into the same form factor and likely reduce power consumption at the same time.
Spanning four to 18 cores and up to 3.6 GHz base clock rates, Intel is enabling CPU models that are optimized for many different markets. Thermal design power ratings range from 55 to 145 W on the server side, and as high as 160 W for the Xeon E5-2687W v3 workstation part. That includes the fully integrated voltage regulator (FIVR) also seen on Intel's desktop-class Haswell processors.
One other note: this is the preliminary planned SKU composition. We know Intel is customizing processors for EMC, NetApp, and other large customers requiring specific feature sets. Those are generally not listed as public SKUs, though.