Sign in with
Sign up | Sign in

Results: Sandra 2014 And 3DMark

Intel Xeon E5-2600 v2: More Cores, Cache, And Better Efficiency
By

In Intel Xeon E5-2600: Doing Damage With Two Eight-Core CPUs, we saw just how much faster a pair of Sandy Bridge-EP-based Xeon E5s were than Westmere-EP- or Nehalem-EP-based Xeons. More so than on the desktop, Intel is aggressive with ramping up the core count of its business-oriented products. So, stepping up from four to six and then to eight cores per socket turns into big gains in threaded software.

The transition to 22 nm manufacturing allows Intel to create up to 12-core Xeon E5-2600 v2 CPUs. However, the replacement for its original Xeon E5-2687W is another eight-core model. Instead of adding more processing resources, Intel increases shared L3 cache to 25 MB and bumps up clock rates. Those alterations, folded in on top of the architectural changes to Ivy Bridge, result in a minor improvement to Sandra’s integer math benchmark, and a more marked speed-up in double-precision calculations.

Of course, both dual-processor setups demonstrate a significant advantage in raw processing power compared to one Core i7-4960X.

As we know from Intel Core i7-3770K Review: A Small Step Up For Ivy Bridge, the company didn’t make a ton of compelling architectural changes to its IA cores. The Xeon E5-2687W v2 does enjoy the advantage of more aggressive clock rates compared to its predecessor, though AVX support across the board means all three configurations benefit.

Even in single-processor configurations, Intel’s quad-channel memory controller facilitates lots of bandwidth. The Core i7-4960X manages more than 40 GB/s at DDR3-1866. Two Xeon E5-2687W CPUs almost double that number using DDR3-1600, achieving 74 GB/s. The Xeon E5-2687W v2s increase maximum throughput almost 10%, cresting 80 GB/s.

We also know that the inclusion of AES-NI in all three of these workstations means that instructions are executed as fast as they’re fed from RAM, making this a bandwidth-constrained task. As we’d expect, performance scales accordingly.

The hashing benchmark is handled by the x86 cores, so the six-core -4960X understandably manages less than half of the throughput posted by both 16-core configurations.

Given the older workstation-oriented GPU in our test system, the only data point worth looking at from 3DMark is the threaded Physics test outcome. Clearly the benchmark doesn't scale according to core count. But the newer Xeon E5-2687W v2 does appear to gain from its larger shared L3 cache and higher stock clock rates.

React To This Article