Results: Productivity
Compiling Google’s Chrome Web browser in Visual Studio 2010 shows off another strength of our dual-CPU machines. Not all development projects are going to benefit as profoundly; however, in this particular test, Intel’s Core i7-4960X needs more than 15 minutes to finish the job. Last generation’s Xeon E5-2687W wraps up in less than 10 minutes. Two Intel Xeon E5-2687W v2s get back to idle in fewer than nine minutes.
Based on the STARS Euler3D computational fluid dynamics production code, Euler3D’s workload is described as follows:
“The benchmark testcase is the AGARD 445.6 aeroelastic test wing. The wing uses a NACA 65A004 airfoil section and has a panel aspect ratio of 1.65, a taper ratio of 0.66, and a 45 degree quarter-chord sweep angle. This AGARD wing was tested at the NASA Langley Research Center in the 16-foot Transonic Dynamics Tunnel and is a standard aeroelastic test case used for validation of unsteady, compressible CFD codes…The benchmark CFD grid contains 1.23 million tetrahedral elements and 223 thousand nodes. The benchmark executable advances the Mach 0.50 AGARD flow solution. Our benchmark score is reported as a CFD cycle frequency in Hertz.”
Because each Xeon E5-2687W v2 sports eight cores, the Ivy Bridge-EP-based setup is easily more than twice as fast as a six-core Core i7-4960X. The current-gen Xeons are also quite a bit quicker than their predecessors thanks to higher clock rates.
Software developer ABBYY puts a lot of effort into optimizing for threading, and the latest version of FineReader continues utilizing all of the host processing resources we throw at it, so long as each core gets 512 MB of RAM. You might not consider optical character recognition to be a compute-intensive operation, but the Xeon E5-2687W v2s finish our benchmark workload in half the time as a flagship Core i7.
In contrast, printing a PowerPoint presentation to PDF is a decidedly single-threaded operation that doesn’t benefit from many cores. But because of Intel’s shift to 22 nm manufacturing and its effect on power, the company can set its Xeon E5-2687W v2 to run at 4 GHz in situations where only one core is active. As a result, the new Xeon is just about as fast as the six-core -4960X also based on the Ivy Bridge architecture, and almost 10% faster than the original Xeon E5-2687W.