Sign in with
Sign up | Sign in

Can Overclocking Hurt Performance At 40 dB(A)?

The Myths Of Graphics Card Performance: Debunked, Part 1
By

Myth: Overclocking always yields performance benefits

Setting a specific fan profile, and letting cards throttle until they reach stability, yields an interesting and repeatable test.

Card
Ambient (°C)
Fan Setting
Fan RPM
dB(A) ±0.5GPU1 Clock
GPU2 Clock
Memory Clock
FPS
Radeon R9 290X
30
41%
2160
40.0870-890
n/a
1250
55.5
Radeon R9 290X
Overclocked
28
41%216040.0831-895
n/a1375
55.5
GeForce GTX 690
42
61%
216040.0967-1006
1032
1503
73.1
GeForce GTX 690
Overclocked
43
61%216040.0575-1150
1124
1801
71.6
GeForce GTX Titan
30
65%
2780
40.0915-941
n/a1503
62
GeForce GTX Titan
Overclocked
29
65%2780
40.0980-1019
n/a1801
68.3

Only the GeForce GTX Titan performs better when it's overclocked. The Radeon R9 290X gets absolutely no benefit, while the GeForce GTX 690 actually loses performance at our 40 dB(A) test point, cutting clock rate as low as 575 MHz when we overclock.

This test shows how much more performance headroom the Titan has compared to the other cards. Although it doesn't match the GeForce GTX 690, the overclocked Titan gets close, leaving the Radeon R9 290X further behind than more typical benchmarks might suggest.

Another interesting point is how much higher the ambient temperature gets with a GeForce GTX 690 in my case (12-14 °C). That's the effect of its center-mounted axial fan, which blows hot air back into the chassis, limiting thermal headroom. In most real-world cases, we'd expect a similar scenario. So, the trade-offs between more noise for more performance (or the other way around) need to be considered based on your own tastes.

Now, with V-sync, input lag, graphics memory, and benchmarking at a specific acoustic footprint explored in-depth, we'll get back to work on part two, which already includes exploring PCIe transfer rates, display sizes, deep-dives on proprietary vendor technologies, and value for your dollar. Of course, if there are other topics you'd like to see us broach, please let us know in the comments section!

Ask a Category Expert

Create a new thread in the Reviews comments forum about this subject

Example: Notebook, Android, SSD hard drive

Display all 135 comments.
This thread is closed for comments
Top Comments
  • 26 Hide
    blackmagnum , February 10, 2014 1:08 AM
    Myth #123: Gamers are lonely boys in Mother's dark basement or attic...
  • 16 Hide
    cats_Paw , February 10, 2014 4:45 AM
    Awsometacular article.Not only its a new standard for GPU performance, but the Human Benchmark and audio test was really fun!Im normally very critisizing about toms articles becouse many times they feel a bit weak, but this one?10/10
  • 12 Hide
    Jaroslav Jandek , February 10, 2014 5:38 AM
    Quote:
    The info on V-Sync causing frame rate halving is out of date by about a decade. With multithreading the game can work on the next frame while the previous frame is waiting for V-Sync. Just look at BF3 with V-Sync on you get a continous range of FPS under 60 not just integer multiples. DirectX doesn't support triple buffering.
    The behavior of V-Sync is implementation-specific (GPU drivers/engine). By using render ahead, swap chains, Adaptive V-Sync, etc., you can avoid frame halving.

    DirectX DOES support TB by using DXGI_SWAP_CHAIN_DESC.BufferCount = 3; (or D3DPRESENT_PARAMETERS.BackBufferCount = 2; for DX9). It actually supports more than triple buffering - Direct3D 9Ex (Vista+'s WDDM) supports 30 buffers.
Other Comments
  • 5 Hide
    ingtar33 , February 10, 2014 12:43 AM
    awesome article, looking forward to the next half.
  • 26 Hide
    blackmagnum , February 10, 2014 1:08 AM
    Myth #123: Gamers are lonely boys in Mother's dark basement or attic...
  • 4 Hide
    AlexSmith96 , February 10, 2014 1:09 AM
    Great Article! I love you guys for coming up with such a nice idea.
  • 2 Hide
    hansrotec , February 10, 2014 1:09 AM
    with over clocking are you going to cover water cooling? it would seem disingenuous to dismiss overclocking based on a generating of cards designed to run up to maybe a speed if there is headroom and not include watercooling which reduces noise and temperature . my 7970 (pre ghz editon) is a whole different card water cooled vs air cooled. 1150 mhz without having to mess with the voltage on water with temps in 50c without the fans or pumps ever kicking up, where as on air that would be in the upper 70s lower 80s and really loud. on top of that tweeking memory incorrectly can lower frame rate
  • 6 Hide
    hansrotec , February 10, 2014 1:18 AM
    I thought my last comment might have seemed to negative, and i did not mean it in that light. I did enjoy the read, and look forward to more!
  • -1 Hide
    hansrotec , February 10, 2014 1:22 AM
    I thought my last comment might have seemed to negative, and i did not mean it in that light. I did enjoy the read, and look forward to more!
  • -1 Hide
    noobzilla771 , February 10, 2014 1:26 AM
    Nice article! I would like to know more about overclocking, specifically core clock and memory clock ratio. Does it matter to keep a certain ratio between the two or can I overclock either as much as I want? Thanks!
  • 5 Hide
    chimera201 , February 10, 2014 1:28 AM
    I can never win over input latency no matter what hardware i buy because of my shitty ISP
  • -1 Hide
    immanuel_aj , February 10, 2014 2:00 AM
    I'd just like to mention that the dB(A) scale is attempting to correct for perceived human hearing. While it is true that 20 dB is 10 times louder than 10 dB, but because of the way our ears work, it would seem that it is only twice as loud. At least, that's the way the A-weighting is supposed to work. Apparently there are a few kinks...
  • 0 Hide
    FunSurfer , February 10, 2014 3:35 AM
    On Page 3: "In the image below" should be "In the image above"
  • -1 Hide
    Formata , February 10, 2014 3:37 AM
    "Performance Envelope" = GeniusNice work Filippo
  • -1 Hide
    beetlejuicegr , February 10, 2014 4:19 AM
    I just want to mention that db is one thing, health of gpu over time is another. In many cases i have seen graphic cards going up to 90C before the default driver of ATI/Nvidia start to throttle down. i prefer a 50C-70C scenario
  • 16 Hide
    cats_Paw , February 10, 2014 4:45 AM
    Awsometacular article.Not only its a new standard for GPU performance, but the Human Benchmark and audio test was really fun!Im normally very critisizing about toms articles becouse many times they feel a bit weak, but this one?10/10
  • 0 Hide
    ubercake , February 10, 2014 5:00 AM
    What's up with Precision X? It seems like they would update it every couple of months and now there hasn't been an update since last June or July?Is EVGA getting out of the utility software business?
  • 8 Hide
    kzaske , February 10, 2014 5:01 AM
    Its' been a long time since Tom's Hardware had such a good article. Very informative and easy to read. Thank you!
  • -1 Hide
    ddpruitt , February 10, 2014 5:04 AM
    Very good article even though there are some technical errors. I look forward to seeing the second half! I would also be interesting in seeing some detailed comparisons of the same cards with different amounts and types of VRAM and case types on the overall impact of performance.
  • 12 Hide
    Jaroslav Jandek , February 10, 2014 5:38 AM
    Quote:
    The info on V-Sync causing frame rate halving is out of date by about a decade. With multithreading the game can work on the next frame while the previous frame is waiting for V-Sync. Just look at BF3 with V-Sync on you get a continous range of FPS under 60 not just integer multiples. DirectX doesn't support triple buffering.
    The behavior of V-Sync is implementation-specific (GPU drivers/engine). By using render ahead, swap chains, Adaptive V-Sync, etc., you can avoid frame halving.

    DirectX DOES support TB by using DXGI_SWAP_CHAIN_DESC.BufferCount = 3; (or D3DPRESENT_PARAMETERS.BackBufferCount = 2; for DX9). It actually supports more than triple buffering - Direct3D 9Ex (Vista+'s WDDM) supports 30 buffers.
  • 8 Hide
    Adroid , February 10, 2014 5:55 AM
    I would love to see a Tom's article on debunking the 2GB vs 4GB graphic card race. For instance, people spam the Tom's forum daily giving advice to buy the 4GB GTX 770 over the 2GB. Truth is, the 4 GB costs 50$ more and offers NO benefit over the 2GB. Even worse, I see people buying/suggesting the 4GB 760 over a 2GB 770 (which runs only 30$ more and is worth every penny). I am also curious about the 4GB 770 sli scenario. For everything I have seen, even in Sli the 4GB offers no real-world benefit (with the exclusion of MAYBE a few frames per second higher at 3 monitor scenarios, but the rates are unplayable regardless so the gain is negligible). The other myth is that the 4GB 770 is more "future proof". Give me a break. GPU and future proof do not belong in the same sentence. Further, if they were going to be "future proof" they would be "now proof". There are games that are plenty demanding to show the advantage of 2gb vs 4gb - and they simply don't. It's tiring seeing people giving shoddy advice all over the net. I wish a reputable website (Tom's) would settle it once and for all. In my opinion, the extra 2 GB of RAM isn't going to make a tangible difference unless the GPU architecture changes...
  • 0 Hide
    ubercake , February 10, 2014 5:55 AM
    DisplayLag.com lists 120Hz and 240Hz HDTVs amongst the monitors, but the maximum input speed for the HDTVs' inputs equate to 60fps? Or am I missing something?If I buy a 240Hz refresh TV, that's output. It processes the 60Hz signal to transform it to a 240Hz output (usually through some form of frame duplication) to minimize motion blur. Does this displayLag.com site mentioned in the article compare apples to oranges by listing HDTVs with monitors as if they operate the same way or am I way off here?
Display more comments