How to Buy the Right SSD: A Guide for 2019

The easiest way to hobble a fast CPU is to pair it with slow storage. While your processor can handle billions of cycles per second, it spends a lot of time waiting for your drive to feed it data. Hard drives are particularly sluggish because they have moving parts and platters that have to spin up. To get optimal performance you need a good solid state drive (SSD).

SSDs Image Credit: Chris RamseyerSSDs Image Credit: Chris Ramseyer

Best Overall
Adata XPG GAMMIX S11 (1TB)
$77.99Amazon
Best M.2 PCIe
Samsung 970 Pro (1TB)
$14.58Samsung
Best SATA
Samsung 860 Pro (1TB)
$11.67Samsung
Best Add-in-Card
Intel Optane 905P (1TB)
$1129.99Walmart
Best Cheap
Crucial MX500 (500GB)
$48.75Walmart
Capacity (Raw / User)
960GB / 1024GB
1024GB / 1024GB
1024GB / 1024GB
960GB / 960GB
512GB /500GB
Form Factor
M.2 2280 D5
M.2 2280 S3
2.5" 7mm
Half-Height, Half-Length
2.5" 7mm
Interface / Protocol
PCIe 3.0 x4 / NVMe 1.3
PCIe 3.0 x4 / NVMe 1.3
SATA / AHCI
PCIe 3.0 x4 / NVMe
SATA / AHCI
Controller
SMI SM2262
Samsung Phoenix NVMe
Samsung MJX
Intel Custom
Silicon Motion SM2258
DRAM
Nanya DDR3
Samsung LPDDR4 1GB
1GB LPDDR4
None
512MB DDR3
NAND
Micron 64-Layer TLC
SanDisk 64L Samsung 64-Layer MLC
Samsung 64L MLC
Intel 3D XPoint
Micron 64-Layer TLC
Sequential Read
3,150 MB/s
3,500 MB/s
560 MB/s
2,600 MB/s
560 MB/s
Sequential Write
1,700 MB/s
2,700 MB/s
530 MB/s
2,200 MB/s
510 MB/s
Random Read
310,000 IOPS
500,000 IOPS
100,000 IOPS
575,000 IOPS
95,000 IOPS
Random Write
280,000 IOPS
500,000 IOPS
90,000 IOPS
550,000 IOPS
90,000 IOPS
Encryption
Class 0 (256-bit FDE), TCG Opal 2.0, Microsoft eDrive
TCG Opal, eDrive
AES 256bit
Hardware AES-256 Encryption; TCG Opal 2.0 SED Support
Endurance
640 TBW
1,200 TBW
1,200 TBW
17.52 PBW
180 TBW
Product Number
AGAMMIXS11-960GT-C
N/A
MZ76P1T0BW
SSDPED1D960GAX1
CT500MX500SSD1
Warranty
5-Years
5-Years Limited
5-Years
5-Years Limited
5-Years Limited


If you already know all about drive types and want specific recommendations, check out our Best SSDs page. And if you're after an external drive or SSD for portable storage or back up, be sure to check our Best External Drives page. But if you don't have a PhD in SSD, here are a few things you need to consider when shopping.

First, if you’re going to be shopping for an SSD deal, you’ll want to check out our feature: How to Tell an SSD Deal From a Solid-State Dud. And if you keep an eye on our Best SSD and Storage Deals page, you might snag a sweet price on an older (but still plenty fast) SATA SSD. Also, keep an eye out for deals on higher-capacity drives, like 1 or even 2TB models. That’s where there’s the most potential for great discounts.

As drives like this and Intel's 660p start to undercut mainstream drives on the old SATA interface, while delivering much more speed, this could be he beginning of the end of our old friend, Serial ATA. And those existing SATA drive will have to continue falling in price as well, in order to at least compete on price, since they can't hope to keep up with NVMe drives on performance.

You may have heard about blazing-fast next-generation PCIe 4.0 M.2 SSDs from the likes of Gigabyte, Corsair, Patriot and others during and after Computex 2019. These drives will indeed up sequential speeds dramatically (thanks to a doubling of the PCIe bus bandwidth). But you'll need a brand-new X570 motherboard to run one of these drives at their top speed, and our initial testing indicates that, beyond the obvious bump in sequential performance, users might not see much in the way of real-world benefits from these drives. But these drives are starting to trickle into our testing facilities, alongside the first X570 motherboards, so we'll have more definitive answers (and lots of testing data) about the first PCIe 4.0 SSDs very soon.

TLDR

Here are four quick tips, followed by our detailed answers to many FAQs:

  • Know your home computer: Find out if you have slots for M.2 drives on your motherboard and room in the chassis. If not, you may may need a 2.5-inch drive instead.
     
  • 500GB to 1TB capacity: Don't even consider buying a drive that has less than 256GB of storage. 500GB offers a good balance between price and capacity. And as 1TB drives slide toward the $100/£100 price point, they're great, roomy options as well.
     
  • SATA is cheaper but slower: If your computer supports NVMe-PCIe or Optane drives, consider buying a drive with one of these technologies. However, SATA drives are more common, cost less and still offer excellent performance for common applications.
     
  • Any SSD is better than a hard drive: Even the worst SSD is at least three times as fast as a hard drive. Depending on the workload, the performance delta between good and a great SSDs can be subtle.

How much can you spend?

Most consumer drives range from 120GB to 2TB. While 120GB drives are the cheapest, they aren't roomy enough to hold a lot of software and are usually slower than their higher-capacity counterparts. It costs as little as $10 (£7) extra to step up from 120 to 250GB size, and that's money well spent. The delta between 250GB and 500GB drives can be slightly more, but 500GB is the sweet spot between price, performance and capacity for most users--particularly if you don't have the budget for a 1TB model.

There are also some drives (primarily from Samsung) with capacities above 2TB. But they’re typically expensive in the extreme (well over $500/£500), so they’re really only worthwhile for professional users who need space and speed and aren’t averse to paying for it.

What kind of SSD does your computer support?

Solid-state drives these days come in several different form factors and operate across several possible hardware and software connections. What kind of drive you need depends on what device you have (or are intending on buying). If you own a recent gaming desktop or are building a PC with a recent mid-to-high-end motherboard, your system may be able to incorporate most (or all) modern drive types.

Alternatively, modern slim laptops and convertibles are increasingly shifting solely to the gum-stick-shaped M.2 form factor, with no space for a traditional 2.5-inch laptop-style drive. And in some cases, laptop makers are soldering the storage directly to the board, so you can’t upgrade at all. So you’ll definitely want to consult your device manual or check Crucial's Advisor Tool to sort out what your options are before buying.

Which form factor do you need?

SSDs come in three main form factors, plus one uncommon outlier.

Types of SSDs.Types of SSDs.

  • 2.5-inch Serial ATA (SATA): The most common type, these drives mimic the shape of traditional laptop hard drives and connect over the same SATA cables and interface that any moderately experienced upgrader should be familiar with. If your laptop or desktop has a 2.5-inch hard drive bay and a spare SATA connector, these drives should be drop-in-compatible (though you may need a bay adapter if installing in a desktop with only larger, 3.5-inch hard drive bays free).
     
  • SSD Add-in Card (AIC): These drives have the potential to be much faster than other drives, as they operate over the PCI Express bus, rather than SATA, which was designed well over a decade ago to handle spinning hard drives. AIC drives plug into the slots on a motherboard that are more commonly used for graphics cards or RAID controllers. Of course, that means they’re only an option for desktops, and you’ll need an empty PCIe x4 or x16 slot to install them.

    If your desktop is compact and you already have a graphics card installed, you may be out of luck. But if you do have room in your modern desktop and a spare slot, these drives can be among the fastest available (take the Intel Optane 900p, for example), due in large part to their extra surface area, allowing for better cooling. Moving data at extreme speeds generates a fair bit of heat.

  • M.2 SSDs: About the shape of a stick of RAM but much smaller, M.2 drives have become the standard for slim laptops, but you'll also find them on many desktop motherboards. Some boards even have two or more M.2 slots, so you can run the drives in RAID.

    While most M.2 drives are 22mm wide and 80mm long, there are some that are shorter or longer. You can tell by the four or five-digit number in their names, with the first two digits representing width and the others showing length. The most common size is labeled M.2 Type-2280. Though laptops will only work with one size, many desktop motherboards have anchor points for longer and shorter drives.

    The largest M.2 drives are 1 to 2TB. So, if you have a generous budget and need a ton of storage space, you should consider other form factors.

  • U.2 SSDs: At first glance, these 2.5-inch components look like traditional SATA hard drives. However, they use a different connector and send data via the speedy PCIe interface, and they're typically thicker than 2.5-inch hard drives and SSDs. U.2 drives tend to be more expensive and higher-capacity than regular M.2 drives. Servers that have lots of open drive bays can benefit from this form factor.

SATA and M.2 SSDsSATA and M.2 SSDs

Do you want a drive with a SATA or PCIe interface?

Strap in, because this bit is more complicated than it should be. As noted earlier, 2.5-inch SSDs run on the Serial ATA (SATA) interface, which was designed for hard drives (and launched way back in 2000), while add-in-card drives work over the faster PCI Express bus, which has more bandwidth for things like graphics cards. 

M.2 drives can work either over SATA or PCI Express, depending on the drive. And the fastest M.2 drives (including Samsung’s 970 drives and Intel’s 760p) also support NVMe, a protocol that was designed specifically for fast modern storage. The tricky bit (OK, another tricky bit) is that an M.2 drive could be SATA-based, PCIe-based without NVMe support, or PCIe-based with NVMe support. That said, most fast M.2 SSDs launched in the last couple of years support NVMe

Both M.2 drives and the corresponding M.2 connectors on motherboards look very similar, regardless of what they support. So be sure to double-check the manual for your motherboard, laptop, or convertible, as well as what a given drive supports, before buying.

If your daily tasks consist of web browsing, office applications, or even gaming, most NVMe SSDs aren’t going to be noticeably faster than less expensive SATA models. If your daily tasks consist of heavier work, like large file transfers, videos or high-end photo editing, transcoding, or compression/decompression, then you might consider stepping up to an NVMe SSD. These SSDs provide up to five times more bandwidth than SATA models, which boosts performance in heavier productivity applications.

Also, some NVMe drives (like Intel's SSD 660p) are edging below the price of many SATA drives. So if your device supports NVMe and you find a good deal on a drive, you may want to consider NVMe as an option even if you don't have a strong need for the extra speed. Keep an eye on our Best Tech Deals page for a curated up-to-date list of the best deals we can find in storage, as well as other components and related products.

What capacity do you need?

  • 128GB Class: Stay away. These low-capacity drives tend to have slower performance, because of their minimal number of memory modules. Also, after you put Windows and a couple of games on it, you'll be running out of space. Plus, you can step up to the next level for as little as $10/£7 more.
     
  • 250GB Class: These drives are much cheaper than their larger siblings, but they're still quite cramped, particularly if you use your PC to house your operating system, PC games, and possibly a large media library. If there’s wiggle room in your budget, stepping up at least one capacity tier to a 500GB-class drive is advisable.
     
  • 500GB Class: Drives at this capacity level occupy a sweet spot between price and roominess, although 1TB drives are becoming increasingly appealing.
     
  • 1TB Class: Unless you have massive media or game libraries, a 1TB drive should give you enough space for your operating system and primary programs, with plenty of room for future media collections and software.
     
  • 2TB Class: If you work with large media files, or just have a large game library that you want to be able to access on the quick, a 2TB drive could be worth the high premium you pay for it.
     
  • 4TB Class: You have to really need this much space on an SSD to splurge on one of these. A 4TB SSD will be quite expensive -- well over $500/£600 -- and you won’t have many options. As of this writing, Samsung was the only company offering consumer-focused 4TB models, in both the 860 EVO and pricier 860 Pro models.

If you’re a desktop user, or you have a gaming laptop with multiple drives and you want lots of capacity, you’re much better off opting for a pair of smaller SSDs, which will generally save you hundreds of dollars while still offering up roughly the same storage space and speed. Until pricing drops and we see more competition, 4TB drives will be relegated to professionals and enthusiasts with very deep pockets.

What about power consumption?

If you’re a desktop user after the best possible performance, then you probably don't care how much juice you're using. But for laptop and convertible tablet owners, drive efficiency is more important than speed—especially if you want all-day battery life.

Choosing an extremely efficient drive like Samsung’s 850 EVO over a faster-but-power-hungry NVMe drive (like, say, the Samsung 960 EVO) can gain you 90 minutes or more of extra unplugged run time. And higher-capacity models can draw more power than less-spacious drives, simply because there are more NAND packages on bigger drives to write your data to.

While the above advice is true in a general sense, some drives can buck trends, and technology is always advancing and changing the landscape. If battery life is key to your drive-buying considerations, be sure to consult the battery testing we do on every SSD we test.

What controller should your SSD have?

Think of the controller as the processor of your drive. It routes your reads and writes and performs other key drive performance and maintenance tasks. It can be interesting to dive deep into specific controller types and specs. But for most people, it’s enough to know that, much like PCs, more cores are better for higher-performing, higher-capacity drives.

While the controller obviously plays a big role in performance, unless you like to get into the minute details of how specific drives compare against each other, it’s better to check out our reviews to see how a drive performs overall, rather than focusing too much on the controller.

Which type of storage memory (NAND flash) do you need?

When shopping for an SSD for general computing use in a desktop or laptop, you don't expressly need to pay attention to the type of storage that’s inside the drive. In fact, with most options on the market these days, you don’t have much a choice, anyway. But if you’re curious about what’s in those flash packages inside your drive, we’ll walk you through various types below. Some of them are far less common than they used to be, and some are becoming the de facto standard.

  • Single-Level Cell (SLC) flash memory came first and was the primary form of flash storage for several years. Because (as its name implies) it only stores a single bit of data per cell, it’s extremely fast and lasts a long time. But, as storage tech goes these days, it’s not very dense in terms of how much data it can store, which makes it very expensive. At this point, beyond extremely pricey enterprise drives and use as small amounts of fast cache, SLC has been replaced by newer, denser types of flash storage tech.
     
  • Multi-Layer Cell (MLC) came after SLC and for years was the storage type of choice for its ability to store more data at a lower price, despite being slower. To get around the speed issue, many of these drives have a small amount of faster SLC cache that acts as a write buffer. Today, apart from a few high-end consumer drives, MLC has been replaced by the next step in NAND storage tech, TLC.
     
  • Triple-Level Cell (TLC) flash is still very common in today’s consumer SSDs. While TLC is slower still than MLC, as its name implies, it’s even more data-dense, allowing for spacious, affordable drives. Most TLC drives (except some of the least-expensive models) also employ some sort of caching tech, because TLC on its own without a buffer often is not significantly faster than a hard drive.
     
    For mainstream users running consumer apps and operating systems, this isn’t a problem because the drive isn’t typically written to in a sustained enough way to saturate the faster cache. But professional and pro-sumer users who often work with massive files may want to spend more for an MLC-based drive to avoid slowdowns when moving around massive amounts of data.
     
  • Quad-Level Cell (QLC) tech is emerging as the next stage of the solid-state storage revolution. And as the name implies, it should lead to less-expensive and more-spacious drives thanks to an increase in density. As of this writing, there are only a handful of consumer QLC drives on the market, including Intel's SSD 660p and Crucial's similar P1, as well as Samsung's SATA-based QVO drive.

What about endurance?

These are two other areas where, for the most part, buyers looking for a drive for general-purpose computing don’t need to dive too deep, unless they want to. All flash memory has a limited life span, meaning after any given storage cell is written to a certain number of times, it will stop holding data. And drive makers often list a drive’s rated endurance in total terabytes written (TBW), or drive writes per day (DWPD).

Samsung 960 EVO NVMe SSDSamsung 960 EVO NVMe SSD

But most drives feature “over provisioning,” which portions off part of the drive’s capacity as a kind of backup. As the years pass and cells start to die, the drive will move your data off the worn-out cells to these fresh new ones, thereby greatly extending the usable lifespan of the drive. Generally, unless you’re putting your SSD into a server or some other scenario where it’s getting written to nearly constantly (24/7), all of today’s drives are rated with enough endurance to function for at least 3-5 years, if not more.

If you plan on using your drive for much longer than that, or you know that you’ll be writing to the drive far more than the average computer user, you'll probably want to avoid a QLC drive in particular, and invest in a model with higher-than-average endurance ratings, and/or a longer warranty. Samsung’s Pro drives, for instance, typically have high endurance ratings and long warranties. But again, the vast majority of computer users should not have to worry about a drive’s endurance.

Do you need a drive with 3D flash? And what about layers?

Here again is a question that you don’t have to worry about unless you're curious. The flash in SSDs used to be arranged in a single layer (planar). But starting with Samsung’s 850 Pro in 2012, drive makers began stacking storage cells on top of each other in layers. Samsung calls its implementation of this tech “V-NAND” (vertical NAND), Toshiba calls it “BiCS FLASH.” Most other companies just call it what it is: 3D NAND. As time progresses, drive makers are stacking more and more layers on top of each other, leading to denser, more spacious, and less-expensive drives.

At this point, the vast majority of current-generation consumer SSDs are made using some type of 3D storage. The latest drives often use 96-layer NAND. But apart from looking at small letters on a spec sheet or box, the only reason you’re likely to notice that your drive has 3D NAND is when you see the price. Newer 3D-based drives tend to cost significantly less than their predecessors at the same capacity, because they’re cheaper to make and require fewer flash packages inside the drive for the same amount of storage.

What about 3D XPoint/Optane?

3D XPoint, (pronounced “cross point”), created in a partnership between Intel and Micron (maker of Crucial-branded SSDs), is an emerging new storage technology that has the potential to be much faster than any existing traditional flash-based SSD (think performance similar to DRAM), while also increasing endurance for longer-lasting storage.

Intel Optane PCIe NVMe SSDIntel Optane PCIe NVMe SSD

While Micron is heavily involved in the development of 3D Xpoint, and intends to eventually bring it to market, as of this writing, Intel is the only company currently selling the technology to consumers, under its Optane brand. Optane Memory is designed to be used as a caching drive in tandem with a hard drive or a slower SATA-based SSD, while the Optane 900p (an add-in card) / 905P are standalone drives, and the Intel 800p can be used as either a caching drive or a standalone drive (though cramped capacities make it more ideal for the former).

Optane drives have much potential, both on the ultra-fast performance front and as a caching option for those who want the speed of an SSD for frequently used programs but the capacity of a spinning hard drive for media and game storage. But it’s still very much a nascent technology, with limited laptop support, low capacities and high prices. At the moment, 3D XPoint is far more interesting for what it could be in the near future than for what it offers to consumers today. However, if you have a lot of money to spend, the Intel Optane 905P is the fastest SSD around.

For more on Optane and Samsung's competing tech, see our SSD Memory Face-Off: Intel Optane vs. Samsung Z-NAND. The latter might not make its way to consumer machines anytime soon, but two viable competing technologies means the future of fast storage should be very interesting.

Bottom Line

Now that you understand all the important details that separate SSDs and SSD types, your choices should be clear. Remember that high-end drives, while technically faster, won’t often feel speedier than less-spendy options in common tasks.

So unless you’re chasing extreme speed for professional or enthusiast reasons, it’s often best to choose an affordable mainstream drive that has the capacity you need at a price you can afford. Stepping up to any modern SSD over an old-school spinning hard drive is a huge difference that you’ll instantly notice. But as with most PC hardware, there are diminishing returns for mainstream users as you climb up the product stack.

MORE: Best SSDs
MORE: Best External Hard Drives and Portable SSDs
MORE: How to Sell Your Used PC Components

22 comments
    Your comment
  • tubagznyven
    yes thx 4 sharing the info mate
  • Blas
    Very nice article for beginners, clear and to the point, practical: bravo!
  • WyomingKnott
    What about having onboard DRAM cache, at least for lookup tables? Or is that a controller detail that will be clearly expressed in performance graphs?
  • 1800Allen
    M.2 connectors have different keys. The common ones for SSDs are B and M. B is 2x PCI and a lot of OEM drives are B+M keyed. M is 4x PCI and what you'll find on NVMe drives. Very important for laptop upgraders as cheaper machines may only have a B+M key.
    Good rundown from TomITPro http://www.tomsitpro.com/articles/datacenter-m.2-ssd-pcie-specification,2-950.html
  • t.s.wiacek
    I concur. Very good article for average computer user. I learned a thing or two as well.

    You should add that Optane works with Intel processors only, so AMD buyers don't need to bother with it.
  • bentremblay
    I bought a PCIE unit (Corsair MP500; 240Gig) for my new build and kinda dread the "new connector" stuff. I'm sure it will work fine but ... I still dread it.
  • bentremblay
    Can't edit to add p.s.2? awww c'mon ... it's 2018 ...
    Anyhow: I think that PCIE unit will work wonders as boot drive, with a selection of high-performance software (ArmA3 rocks!)
  • ITFT
    "2.5-inch SSDs run on the Serial ATA interface, which was designed for hard drives (and launched way back in 2000)"

    I remember that in 2004/2005 I could still buy a new laptop with an IDE hard drive, and SATA drives were pretty new at the time and had a higher price tag than IDE. But either way, you forgot to mention that there are 3 types of SATA and that the Sata 3 is what an average user would need to unleash a full potential of a modern SSD.
  • CRamseyer
    Optane is not limited to just Intel processors. Optane Memory is a speciality product that is part of a system. You can use it with AMD's cache software, or use it just as a regular SSD.
  • Mohammed
    Nice article worth to be read.
    Thanks a lot for sharing the knowledge with us.
  • Tal Greywolf
    What about mSata drives? You can get the Samsung variety easily enough...
  • k19_window_maker
    i bought a 2 tb adata sata , it's not a nvme or m.2 and such stuff but it's never the less 2 tb 's
  • jdcranke07
    I would have to say that everything is pretty much spot on for most users. However, low capacity M.2 SSDs (like those w/ similar specs to the 960 EVO) used as a boot drive w/ 2.5" SSD(s) to make up the rest of your storage (assuming you don't need more than 1 or 2TB), I feel is the best for cost if you want raging speeds for your OS. Price points for SSDs for over 500GB, IMO, are showing some pretty bad returns in terms of performance to volume to cost ratios.

    However, I completely love M.2 SSDs since it cuts out so much when you're talking about cable management. Love this in mini-ITX builds the most.
  • t.s.wiacek
    "CRamseyer
    Optane is not limited to just Intel processors. Optane Memory is a speciality product that is part of a system. You can use it with AMD's cache software, or use it just as a regular SSD."

    You're right. I thought both 900P series and the earlier cache drives were Intel platform limited. I verified it with Intel website and 900P drives are not chipset/platform dependent. I stand corrected.
  • Olle P
    There are some details where I concur and other where I disagree.

    1. Low end SSD is much faster than HDD, but even faster SSD is a matter of seriously diminishing returns at much higher cost.
    Totally true.

    2. Don't even consider buying a drive that has less than 256GB of storage.
    I wouldn't be that strict in general. Much better to analyze one's needs and decide from that. I have a 120 GB system SSD, and the programs I'd like to have on SSD but can't fit in there won't make it on a 256 GB (or even 500 GB) SSD either. For me the only reason to pick 256 over 120 is that there's almost no added cost.

    3. Form factors.
    Do consider that the downsides of M.2 are typically higher prices and less cooling compared to 2.5".

    4. Actual cost.
    In the "sweet spot" at 250 - 500 GB you'll get (at least) eight times more storage if you buy HDD instead.
  • lpide
    good quick reference!
  • vellakd
    Most comprehensive article on this I have read. Thanks!
  • mvscal
    I'm not sure whether to put my PNY 120gb as primary and put swap on a spinner after reading this article. Good info and I'll figure it out once this blond moment slides past. Say hi to the 'heeland kuouws' next time wandering Scotland.
  • I
    I notice a huge difference from a fresh reboot (over using a midrange HDD) but after a day of use? Not so much, I never reboot my systems unless necessary. Some people think "why hybernate if boot is so fast with an SSD?" and they're missing the bigger picture, that the point is most things I do, are running from main memory cache not the SSD at all. Reboot and you have to reload that. Of course this also means you must have ample main memory, which I'll always prefer because its write cycle lifespan is practically infinite compared to an SSD. Oh, and I don't see much need for an SSD over 250GB since I'm not a gamer, don't need rapid game level load times. Anything else that takes up a lot of space has its needs more than met by a HDD, even over a GbE lan connection. Buying a 1TB+ SDD seems silly to me, who really needs that many games stored on an SSD unless they're just pirating them all and that's how they can throw so much money at the SSD size for them all?
  • dark_wizzie
    EX950 review when?
  • kep55
    One problem with SSDs that I haven't seen covered. When one goes south, there's really no way to recover the data. I learned that the hard way. My HDD have puked once or twice and I simply download some OSS and after a bit all is right with the world.
  • mlee 2500
    Don't go chasing Triple Level Cell.