CERN Ready To Test Fire Its Time Machine On September 10

Geneva (Switzerland) - Scientists are gearing up to launch the Large Hadron Collider (LHC) a 17-mile long particle accelerator that debuts with the promise to enable science to look deep into the origins of the universe, providing new insights in matter, space and time. The LHC may very well be the most fascinating science project of our generation.

Particle generators usually boast many superlatives and breathtaking specifications that are difficult to comprehend. One year ago, we published an extensive article on Fermilab’s Tevatron, the world’s most powerful particle accelerator, its vision and its astounding accomplishments. On September 10, CERN’s LHC will replace the Tevatron, located in Batavia, Illinois, as the world’s most powerful particle accelerator and collider, at least until a possible 18 mile long linear collider (ILC or International Linear Collider) may be built in the U.S.

The purpose of the LHC, of course, is to create beam collisions. When colliding, scientists expect about 20 collisions when the 200 billion beam particles cross. However, due to the high speed of the beam and the fact that the LHC will cross the beams 30 times per second, there will be 600 million collisions per second at a rate of 600 MHz on average. The difficult task is not only to manage this extremely high and potentially very destructive energy level, but to also read the results of the particle collisions. However, it is nearly impossible for scientists to capture data of 600 million collisions per second with today’s computing technology.

For the first launch and the remainder of the year, CERN scientists will limit the LHC energy level to 5 TeV. LHC will see its first circulating beam on September 10 at the injection energy of 450 GeV (0.45 TeV). Once stable circulating beams have been established, they will be brought into collision, and the final step will be to commission the LHC’s acceleration system to boost the energy to 5 TeV, taking particle physics research to a new frontier. CERN said that the LHC has been prepared for the test for some time: By the end of July, this work was approaching completion, with all eight sectors at their operating temperature of 1.9 degrees above absolute zero (-271° C, 1.9 K).

Once stable circulating beams have been established, they will be brought into collision, and the final step will be to commission the LHC’s acceleration system to boost the energy to 5 TeV, taking particle physics research to a new frontier.

Wolfgang Gruener
Contributor

Wolfgang Gruener is an experienced professional in digital strategy and content, specializing in web strategy, content architecture, user experience, and applying AI in content operations within the insurtech industry. His previous roles include Director, Digital Strategy and Content Experience at American Eagle, Managing Editor at TG Daily, and contributing to publications like Tom's Guide and Tom's Hardware.