Sign in with
Sign up | Sign in

Rotation Speed

The Storage Guide
By

Typical harddisks have a rotation speed from 4,500 to 7,200 rpm, a 10,000 rpm drive just hit the market. The faster the rotation, the higher the transfer rate, but also the louder and hotter the HD. You may need to cool a 7200 rpm disk with an extra fan, or its life would be much shorter. Modern HD's read all sectors of a track in one turn (Interleave 1:1). The rotation speed is constant.

Number Of Sectors Per Track

Modern harddisks use different track sizes. The outer parts of a disk have more space for sectors than the inner parts. Usually, HD's begin to write from the outside to the inside of a disk. Hence, data written or read at the beginning of a HD is accessed and transferred faster rate.

Seek Time / Head Switch Time / Cylinder Switch Time

The fastest seek time occurs when moving from one track directly to the next. The slowest seek time is the so called full-stroke between the outer and inner tracks. Some harddisks (especially SCSI drives) don't execute the seek command correctly. These drives position the head somewhere close to the desired track or leave the head where it was. The seek time everyone is interested in is the average seek time, defined as the time it takes to position the drive's heads for a randomly located request. Yes, you are correct: seek time should be smaller if the disk is smaller (5.25", 3.5" etc.).

All heads of a harddisk are carried on one actuator arm, so all heads are on the same cylinder. Head switch time measures the average time the drive takes to switch between two of the heads when reading or writing data.

Cylinder switch time is the average time it takes to move the heads to the next track when reading or writing data.

All these times are measured in milliseconds (ms).

Rotational Latency

After the head is positioned over the desired track, it has to wait for the right sector. This time is called rotational latency and is measured in ms. The faster the drives spins, the shorter the rotational latency time. The average time is the time the disk needs to turn half way around, usually about 4ms (7200rpm) to 6ms (5400rpm).

Data Access Time

Data access time is the combination of seek time, head switch time and rotational latency and is measured in ms.

As you now know, the seek time only tells you about how fast the head is positioned over a wanted cylinder. Until data is read or written you will have to add the head switch time for finding the track and also the rotational latency time for finding the wanted sector.

Cache

I guess you already know about cache. All modern HD's have their own cache varying in size and organization. The cache is normally used for writing and reading. On SCSI HD's you may have to enable write caching, because often it is disabled by default. This varies from drive to drive. You will have to check the cache status with a program like ASPIID from Seagate.

You may be surprized that it is not the cache size that is important, but the organization of the cache itself (write / read cache or look ahead cache).

With most EIDE drives, the cache memory of the harddisk is also used for storing the HD's firmware (e.g. software or "BIOS"). When the drive powers up, it reads the firmware from special sectors. By doing this, manufacturers save money by eliminating the need for ROM chips, but also give you the ability to easily update your drives "BIOS" if it is necessary (Like for the WD drives which had problems with some motherboard BIOS' resulting in head crashes!).

Organization Of The Data On The Disks

You now know, a harddisk has cylinders, heads and sectors. If you look in your BIOS you will find these 3 values listed for each harddisk in your computer. You learned that a harddisk don't have a fixed sector size as they had in earlier days.

Today, these values are only used for compatibility with DOS, as they have nothing to do with the physical geometry of the drive. The harddisk calculates these values into a logical block address (LBA) and then this LBA value is converted into the real cylinder, head and sector values. Modern BIOS' are able to use LBA, so limitations like the 504 MB barrier are now gone.

Cylinder, heads and sectors are still used in DOS environments. SCSI drives have always used LBA to access data on the harddisk. Modern operating systems access data via LBA directly without using the BIOS.

Transfer Rates / Mappings

In the pictures you can see the several ways how data can be stored physically on the harddisk. With a benchmark program that calculates the transfer rate or seek time of the whole harddisk you can see if your drive is using a 'vertical' or a 'horizontal' mapping. Depending on what kind of read/write heads and servo-motors (for positioning the actuator arm) are used it is faster to switch heads or to change tracks.

Ask a Category Expert

Create a new thread in the Reviews comments forum about this subject

Example: Notebook, Android, SSD hard drive

There are 0 comments.
This thread is closed for comments