3D III-V Transistors Could Enable Lighter Notebooks

The scientists believe that indium-gallium-arsenide could some day replace silicon as it has superior electron flow characteristics. Materials like indium-gallium-arsenide, which are referred to as III-V materials because they combine elements from the third and fifth groups of the periodic table, could make electron flow more efficiently and enable thinner and lighter computing devices in the future.

"Once you shrink gate lengths down to 22 nanometers on silicon you have to do more complicated structure design," Ye said. "The ideal gate is a neck-like, gate-all-around structure so that the gate surrounds the transistor on all sides."

He believes that 14 nm chip designs are still possible with silicon, but any further shrinks are likely to require a new material. "Nanowires made of III-V alloys will get us to the 10 nanometer range," he said.

Douglas Perry
Contributor

Douglas Perry was a freelance writer for Tom's Hardware covering semiconductors, storage technology, quantum computing, and processor power delivery. He has authored several books and is currently an editor for The Oregonian/OregonLive.