Intel SSD 710 Tested: MLC NAND Flash Hits The Enterprise
Intel On Enterprise Storage: No More SLC; Meet HET MLC
You'll find some of the highest-end computer hardware in the largest data centers and supercomputing labs; stuff that would blow your mind. When it comes to the high-performance storage in those environments, SSDs based on single-level cell (SLC) memory elements are often favored for their great performance, power, and reliability characteristics.
In the early days of solid-state storage, multi-level cell (MLC) NAND SLC-based SSDs were deemed unsuitable for the write-intensive nature of many server workloads. The technology weathers fewer program and erase (P/E) cycles before deteriorating. Moreover, MLC achieves slower write speeds than SLC-based cells. And, in the process, MLC memory uses more power (an important consideration in a data center potentially playing host to thousands of drives).
As a result, many IT managers look to SLC-based drives for applications where data security and speed are of the utmost importance. Specifically, Intel's X25-E (first reviewed back in 2009: Intel’s X25-E SSD Walks All Over The Competition) is the benchmark by which other enterprise-class SSDs are measured.
There are a couple of problems, though. First, as its name suggests, an SLC memory cell only stores one bit of data. Compute-quality MLC stores two. Right off the bat, you can see that multi-level cell technology is what facilitates the higher capacities many SSDs enjoy today. Intel's X25-E, in comparison, topped out at 64 GB. The other issue is price. That same 64 GB flagship sells for as much as $800, more than $12 per gigabyte of storage.
Clearly, if a manufacturer could figure out a way to push the benefits of MLC-based NAND into the enterprise without compromising data integrity, there would at least be a compelling reason to start slinging larger SSDs together in RAID, or using them singularly as caching devices in a tiered storage subsystem, right?
Well, Intel certainly thinks so. The company is discontinuing the X25-E altogether in favor of a new SSD 710, representing a shift from expensive SLC to more accessible MLC memory.
Despite the fact that Intel's new data center drive takes the MLC route, the company says it delivers a different experience than the mainstream SSD 320. The NAND found in Intel's new enterprise SSD is dubbed "High Endurance Technology (HET) MLC", which tries to balance the capacity benefits of MLC and write endurance of SLC memory.
Stay On the Cutting Edge: Get the Tom's Hardware Newsletter
Get Tom's Hardware's best news and in-depth reviews, straight to your inbox.
The move away from SLC naturally involves some compromise. However, from a big-picture approach, it makes sense. When you combine the technical barriers to SLC production and factor in economies of scale, at the same density, SLC NAND commands a price premium 4x higher than MLC, according to data from iSuppli. An MLC-based drive is going to be much more accessible to cost-conscious SMBs and larger data centers alike.
Cost | Market Price (Debut) | Price Per GB |
---|---|---|
Intel X25-E 32 GB | $460 | $14.38 |
Intel X25-E 64 GB | $900 | $14.06 |
Intel 710 SSD 100 GB | $679 | $6.79 |
Intel 710 SSD 200 GB | $1299 | $6.50 |
Intel 710 SSD 300 GB | $1999 | $6.63 |
Oh yeah. Look at the difference in price per gigabyte. The X25-E debuted at about $14/GB. More than two years later, just before Intel announced it was discontinuing the X25-E, it had only dropped to about $11/GB. That's still a 40% price premium over this new SSD 710, though. But there's more to the story than just dollars and cents.
Consumer-oriented SSDs are still hovering near $2/GB. So, an MLC-based SSD priced at $6.50/GB should still rightly raise some eyebrows. However, the HET MLC found in Intel's SSD 710 is purported to offer write endurance 30 times greater than the cheaper consumer-grade MLC. So, if we assume that 25 nm MLC NAND is rated at 3000 P/E cycles, HET MLC should come close to 90 000 cycles. That SLC-like write endurance rating is intended to assuage the fear of IT managers now unable to purchase the X25-E and faced with SSD 710. A substantially-lower price per gigabyte, meanwhile, is designed to attract the contingent of folks stuck using magnetic storage because they couldn't stomach the premium on SLC memory for their mission-critical data.
Current page: Intel On Enterprise Storage: No More SLC; Meet HET MLC
Next Page Inside The SSD 710: Something Old And Something New-
whysobluepandabear TLDR; Although expensive, the drives offer greater amounts of data transfer, reliability and expected life - however, they cost a f'ing arm and a leg (even for a corporation).Reply
Expect these to be the standard when they've dropped to 1/3rd their current price. -
RazorBurn To some companies or institutions.. The data this devices hold far outweighs the prices of this storage devices..Reply -
nekromobo I think the writer missed the whole point on this article.Reply
What happens when you RAID5 or RAID1 the SSD's??
I don't think any enterprise would trust a single SSD without RAID. -
halcyon __-_-_-__with the reliability those have they will never ever find their way into any serverMy Vertex 3 has been very reliable and I'm quite satisfied with the performance. However, I've heard reports that some, just like with anything else, haven't been so lucky.Reply -
toms my babys daddy I thought ssd drives were unreliable because they can die at any moment and lose your data, and now I see that they're used for servers as well? are they doing daily backups of their data or have I been lied to? ;(Reply -
halcyon toms my babys daddyI thought ssd drives were unreliable because they can die at any moment and lose your data, and now I see that they're used for servers as well? are they doing daily backups of their data or have I been lied to? ;(SSDs are generally accepted to be more reliable than HDDs...at least that's what I've been lead to believe.Reply -
Onus halcyonSSDs are generally accepted to be more reliable than HDDs...at least that's what I've been lead to believe.Yes, but when they die, that's it; you're done. You can at least send a mechanical HDD to Ontrack (or a competing data recovery service) with a GOOD chance of getting most or all of your data back; when a SSD bricks, what can be done?Reply
-
CaedenV nekromoboI think the writer missed the whole point on this article.What happens when you RAID5 or RAID1 the SSD's??I don't think any enterprise would trust a single SSD without RAID.The assumption is that ALL servers will have raid. The point of this article is how often will you have to replace the drives in your raid? All of that down time, and manpower has a price. If the old Intel SSDs were about as reliable as a traditional HDD, then that means that these new ones will last ~30x what a traidional drive does, while providing that glorious 0ms seek time, and high IO output.Reply
Less replacement, less down time, less $/GB, and a similar performance is a big win in my book.
toms my babys daddyI thought ssd drives were unreliable because they can die at any moment and lose your data, and now I see that they're used for servers as well? are they doing daily backups of their data or have I been lied to? ;(SSDs (at least on the enterprise level) are roughly equivalent to their mechanical brothers in failure rate. True, when the drive is done then the data is gone, but real data centers all use RAID, and backups for redundancy. Some go so far as to have all data being mirrored at 2 locations in real time, which is an extreme measure, but worth it when your data is so important.
Besides, when a data center has to do a physical recovery of a HDD then they have already failed. The down time it takes to physically recover is unacceptable in many data centers. Though at least it is still an option.