Skip to main content

Upgrade Advice: Does Your Fast SSD Really Need SATA 6Gb/s?

Buy The SSD You Can Afford, Not The Fastest One

If you spend all of your time looking at predominantly synthetic storage benchmarks, which tend to frame storage workloads in the most taxing light possible, then you end up missing a huge piece of the storage performance picture.

Yes, those metrics are critically important in comparing SSDs. As you see in the real-world tests, it'd be almost impossible to determine a winner between OCZ's Vertex 3, Crucial's m4, or Samsung's 830 using mainstream workloads. Drilling down into specific profiles like 4 KB random writes or 128 KB sequential reads makes it much easier to draw conclusions about the idiosyncrasies of each drive's architecture.

But a relative strength in all of those benchmarks doesn't necessarily translate into a positive gain in user experience. Does an extra 25% jump in testable data throughput cut your Windows boot time or make backing up a game on Steam faster by a corresponding percentage? Does it even directly translate into file copies that finish that much faster? Not at all.

So, here's the thing. Yes, there are clear cases, particularly if you're a power user, where owning a motherboard with 6 Gb/s is going to allow your 6 Gb/s-capable SSD to shine. However, if a friend were to ask us if he should hold off on an SSD purchase until he could upgrade his old Core 2 machine to something newer with 6 Gb/s connectivity, we'd say no. For someone using a hard drive today, a fast SSD (even one artificially hobbled by a 3 Gb/s port) will yield massive and immediate gains in nearly every aspect of computing.

Snagging one that does work with 6 Gb/s link rates ensures you get the most out of it after an upgrade, sure. However even Intel's SSD 320, based on an older proprietary controller constrained to 3 Gb/s remains an admirable piece of hardware.

We've used this chart before, but it tells a compelling story. There's a huge gap between the cluster of SSDs, the high-end hard drive in the middle of the graph, and the low-end hard drive in the upper right-hand corner. You have to zoom in quite a bit, though, to distinguish between high- and low-end SSDs. At the end of the day, even if you're a fairly hardcore enthusiast, there's fairly little sense in agonizing over which SATA 6Gb/s SSD is the fastest. As we mentioned, even Intel's 320 still stacks up remarkably well.

So banish any thought that you must save for the newest, most expensive, and highest-rated SSD. If you have the money for a platform upgrade, there are certainly measurable gains to be had from upgrading to a SATA 6Gb/s-capable motherboard and the best solid-state drive. On a tighter budget, however, buying the SSD that everyone says is the fastest isn't as important as buying an SSD you can afford, particularly if it means replacing a hard disk as your system drive.

The subtle differences between high-end storage products remain important to us and our enthusiast audience, and we'll continue dissecting them. But it's just as important to us to consider the greater scope of things. In that context, you shouldn't let a 3 Gb/s storage controller stand in the way of an upgrade.

  • compton
    Buying the best drive rather than the perceived fastest is good advice. I have fast drives and slow drives, but I prize the reliable ones. The good news is that there are drives which are both fast and reliable, so don't buy a drive just because of its Vantage score or simply because of the speed with which it handles 0-fill data.
    Reply
  • compton
    Which FW is the 830 using? The Test Setup and Benchmarks page lists it as CXM0. There are currently 3 FWs, CXM01,02,03]B1Q. The page simply lists CXM0.
    Reply
  • phamhlam
    Crucial m4, Samsung 830, and Intel 320 are all good drives. 128GB drives go for $180. They are the best value.

    I find it interesting that SATA 3 doesn't make a difference in file copy. Most SATA 3 drives cost the same as a SATA 2 so no need to save a few dollars.
    Reply
  • SteelCity1981
    So basiucly what this is saying is even thought SATA 3 looks impressive on paper, when it comes to actual real world results it's really not any faster than SATA 2 in performaning everyday real world task.
    Reply
  • dark_knight33
    I think I wrote you an email asking for this article when I was looking to buy my SSD a few weeks/months ago. Even though your article came after I purchased mine, thanks for addressing it. I'm rocking a Vertex III 240GB on my Sata II x58 MB and I don't regret it one bit.
    Reply
  • a4mula
    I can say this. I'm running 2x OCZ Solid first gen SSDs off SATA 3Gb/s ICH10R. When new they benched at about 300/100 sequential read/write. Compared to current generation drives this is pretty slow. When researching my current build I asked a friend that just put together a rig with a 64GB M4 on Intel 6Gb/s if I could give it a spin. While his machine boots faster w/o a doubt, I attest most of this to the RAID verification I face when I boot. Inside Win7 I couldn't tell a difference at all. While I'm sure his system is faster, it just wasn't obvious or noticeable in my opinion.
    Reply
  • sincreator
    What about quality? Is there any way to stress them till they start to fail? It just seems that if there isn't much difference in the drives in real world applications, then the next logical thing a buyer would want to know would be how much average data particuar drives can read/write before a failure. Like actual stress testing in a controlled environment. Come on Tom's, don't you want to destroy a few perfectly good SSD's? lol. These are things i would like to know more than anything else so I could make a very informed decision before a purchase.

    I asked before but no one answered. Anyway here goes... If SSD's are supposed to be more reliable than spinning drives, why are most warranties for 3 years instead of the usual 5 years on high end conventional spinning drives? It seems like the companies are not to confident in their products to me, and that's why I ask this question and the one that preceded it. It would be nice to get some honest answers......
    Reply
  • compton
    sincreatorWhat about quality? Is there any way to stress them till they start to fail? It just seems that if there isn't much difference in the drives in real world applications, then the next logical thing a buyer would want to know would be how much average data particuar drives can read/write before a failure. Like actual stress testing in a controlled environment. Come on Tom's, don't you want to destroy a few perfectly good SSD's? lol. These are things i would like to know more than anything else so I could make a very informed decision before a purchase. I asked before but no one answered. Anyway here goes... If SSD's are supposed to be more reliable than spinning drives, why are most warranties for 3 years instead of the usual 5 years on high end conventional spinning drives? It seems like the companies are not to confident in their products to me, and that's why I ask this question and the one that preceded it. It would be nice to get some honest answers......
    Well, the warranties are mostly 3 years, but some drives like Intel's 320s and Plextor's M3S drives do have 5 years of coverage.

    As for stress testing... well... some have taken this matter in their own hands to answer that very question. So far, it's far more than anyone could imagine. And for complex reasons, a drive only writing 10GB might not wear out it's NAND in over a century. A drive's endurance is typically way underestimated. No one is going to wear out any 3xnm or 2xnm NAND in 5 years, except in the most extreme cases. Most drives die from firmware problems, or physical damage to the PCB or components, or some other unknown phenomenon. Only the factory could do a proper autopsy, and since the FW, FTL, controller, etc. are usually trade secrets or covered under NDA, no one in the know is going to volunteer.

    There is an SSD endurance thread on the XtremeSystems forum:

    http://www.xtremesystems.org/forums/showthread.php?271063-SSD-Write-Endurance-25nm-Vs-34nm/page1&rel=ugc]http://www.xtremesystems.org/forums/showthread.php?271063-SSD-Write-Endurance-25nm-Vs-34nm/page1]http://www.xtremesystems.org/forums/showthread.php?271063-SSD-Write-Endurance-25nm-Vs-34nm/page1
    Reply
  • heezdeadjim
    You probably aren't going to see much of a difference in speed while on the desktop from one SSD to another. It's when loading programs and game levels that you might see a real difference in.

    I know when I first got my 1st gen OCZ Vertex nearly when it first came out, I was always the first person on the map for Counter Strike. While other players were still loading the level, I would rush in from the side and lob a grenade and take a few people out because they didn't think anyone could get there so fast (now with more people with SSD's, it's not quite so funny anymore).

    I do appreciate being able to open PS CS5 in less than 2 seconds (for quick photo re-edits) and opening Premiere a lot faster too. Transferring large RAW photo folders (think 50+GBs total) to and from backup HDD's, I could use the extra MB's from these new 6Gb/s versions.
    Reply
  • cmcghee358
    I've read this article entirely too many times. Except this time it looks much better than the version I saw. Good job Mr. Angelini!
    Reply