Sign in with
Sign up | Sign in

Power Supply Reference: Consumption, Savings, And More

Power Supply Reference: Consumption, Savings, And More
By

Tom's Hardware and Que Publishing are partnering up to give you four chapters from Scott Mueller's Upgrading And Repairing PCs, 20th Edition. This sixth and final installment is the second half of the forth chapter we're making available from Scott's book, which covers Power Supply Usage Factors. Don't forget to check out the previous chapters published on Tom's Hardware, Computer History 101: The Development Of The PC, Hard Drives 101: Magnetic Storage, LAN 101: Networking Basics,  LAN 102: Network Hardware And Assembly and Power Supply Reference: Specifications.

When expanding or upgrading your PC, ensure that your power supply is capable of providing sufficient current to power all the system’s internal devices. One way to see whether your system is capable of expansion is to calculate the levels of power consumption by the various system components in your system, and then compare that to the rating on the power supply to see if it is up to the job. This calculation can also help you decide whether you must upgrade the power supply to a more capable unit. Unfortunately, these calculations can be difficult to make accurately because many manufacturers do not publish detailed power consumption data for their products. In some cases, you can find the specs from a similar component and go by that data instead. Usually components of the same basic design, capability, and vintage have relatively the same power consumption characteristics. The following table shows the range of power usage for typical PC components I’ve observed over the past few years.

Power Consumption Calculation
Component 
Power UsageComments
Motherboard50 W–75 WDepends on the number of integrated components.
Processor25 W–150 WFor each physical processor (not cores). Most are 50 W–100 W.
RAM5 W–15 WFor each module (DIMM).
Integrated video5 W–15 WIntegrated into the North Bridge chip (Ed.: Though, increasingly on the CPU).
Discrete video card25 W–300 WFor each video card.
PCI card
5 W–15 WFor each nonvideo card.
PCIe card10 W–25 WFor each nonvideo card.
Hard disk drive15 W–30 WFor each drive. Power use increased during startup.
Optical drive
15 W–35 WFor each drive.
Cooling fan3 W–5 WFor each fan.
USB/FireWire2 W–5 WFor each used port.


Of course, power consumption can vary greatly for different devices such as processors and video cards, so if you want to be more informed, consult the data sheets or technical manuals for your specific components. Also, these overall wattage figures do not give the breakdown covering which of the rails (+3.3 V, +5 V, or +12 V) each device will use. In some cases, the combination of components used can exceed the available power on a single rail while still being under budget for the total wattage available from all the rails combined. That is in fact one reason that people end up purchasing a power supply with a much higher watt rating than might seem necessary.

After you’ve added up everything I recommend, multiply the total power consumed by all your components by 1.5 to estimate the size of power supply required. This allows some headroom for future expansion and accounts for the fact that at certain times some devices can draw much more than their nominal power.

If you want an easier way to calculate your estimated power requirements, Asus has a fairly good power supply wattage calculator that you can use online at the following URL: http://support.asus.com/PowerSupplyCalculator/PSCalculator.aspx. After you fill in all the fields with the components in the intended system, the calculator gives you an estimate of the minimum power supply rating you should choose to power the system.

Different types of bus slots can provide different levels of power for cards. Fortunately, it is rare for any cards other than video cards to use the maximum allowable power. The table below shows the maximum power available per slot for different bus types.

Maximum Available Power per Bus Slot
Bus Type+3.3 V Current (Amps)+5 V Current (Amps)+12 V Current (Amps)Total Power (Watts)
ISA
N/A
2.0
0.175
12.1
EISAN/A4.5
1.5
40.5
VL-busN/A2.0
N/A10
16-bit MCAN/A1.6
0.175
10.1
32-bit MCAN/A2.0
0.175
12.1
PCI
7.6
5
0.5
56
AGP
6
2
1
42
PCI Express4.8
N/A4.8
75


The biggest cause of power supply overload problems has historically been filling up the expansion slots (especially with multiple video cards), using high-powered processors, and adding more drives. Multiple hard drives, optical drives, and floppy drives can create quite a drain on the system power supply. Be sure you have enough +12 V power to run all the drives you plan to install. Tower systems can be especially problematic because they have so many drive bays. Just because the case has room for the devices doesn’t mean the power supply can support them. Be sure you have enough power to run all your expansion cards, especially video cards. However, remember that most cards draw less than the maximum allowed. Today’s newest processors can have high current requirements for the +5 V or +3.3 V supplies. When you’re selecting a power supply for your system, it pays to be conservative, so be sure to take into account future upgrades or additions to the system.

Many people wait until an existing component fails to replace it with an upgraded version. If you are on a tight budget, this “if it ain’t broke, don’t fix it” attitude might be necessary. Power supplies, however, often do not fail completely all at once; they can fail in an intermittent fashion or allow fluctuating power levels to reach the system, which results in unstable operation. You might be blaming system lockups on software bugs when the culprit is an overloaded power supply. In addition, an inadequate or failing supply causing lockups can result in file system corruption, which causes even further system instabilities (which could remain even after you replace the power supply). If you use bus-powered USB devices, a failing power supply can also cause these devices to fail or malfunction. If you have been running your original power supply for a long time and have upgraded your system in other ways, you should expect some problems, and you might want to consider reloading the OS and applications from scratch.

Although there is certainly an appropriate place for the exacting power-consumption calculations you’ve read about in this section, a great many experienced PC users prefer the “don’t worry about it” power calculation method. This technique consists of buying or building a system with a good-quality 500-watt or higher power supply (or upgrading to such a supply in an existing system) and then upgrading the system freely, without concern for power consumption.

Display all 35 comments.
This thread is closed for comments
  • 1 Hide
    de5_Roy , January 11, 2012 4:07 AM
    very informative!
  • 0 Hide
    palladin9479 , January 11, 2012 4:47 AM
    Holy cow. Thanks for that Asus PSU link. I now know what's causing my system instability.

    AMD Phenom II x4 980BE OC'd
    4 x 4GB DDR3-1600 memory
    2x NVidia GTX-580 SLI'd
    4x SATA HDD's
    1x SATA DVDRW
    7x FANs (Water cooled system)

    Comes to 1150W recommended. I have a Corsair HX-1000 1000W PSU.
  • 0 Hide
    sincreator , January 11, 2012 4:57 AM
    Still running a Thermaltake 750w toughpower here. Been 5/6 years now. Man this PSU has seen some upgrades. lol. I'll probally buy another toughpower/Corsair sometime in the near future.(If this one ever dies. lol)
  • -4 Hide
    Dacatak , January 11, 2012 5:41 AM
    Still using the same Enermax Liberty 500W from 2006 for my new Sandy Bridge upgrade with GTX 560Ti.
    The only reason you'd need more than 500W is if you need to power more than one GPU.

    Of course, as stated in the article, not all 500W PSUs are equal. The Enermax Liberty was among the best 500W PSUs in its day, and its quality is still exceptional even by today's standards.
    It has dual 12V rails with 22A on each with a combined output of 32A total. Most of the dual-rail 500W PSUs sold nowadays max out at 18A per rail.

    The Enermax was definitely ahead of its time, and in general, PSUs sold directly by their manufacturer (OEMs such as Enermax, FSP, Kingwin, Seasonic) tend to be of superior quality than those sold by third-party rebranders (Antec, OCZ, Thermaltake, Corsair, etc.).
  • 7 Hide
    cumi2k4 , January 11, 2012 8:22 AM
    Was wondering about power cycling and thermal shock... The article said that thermal shock from powering on & off can cause deterioration in a system. You suggest S3 (Suspend to Ram), but does this also cause thermal shock to the system when resuming from sleep mode?
  • 2 Hide
    lordvj , January 11, 2012 11:59 AM
    ^ this. was wondering the same thing
  • 2 Hide
    jaquith , January 11, 2012 2:37 PM
    Great article and thanks, it'll 'hopefully' make my job easier in the Forum and stop the silly arguments I have recommending PSU's. I really wish folks would stop skimping on their PSU's on nice systems.

    Another important point that folks have a tendency to forget is 'electrolytic capacitor aging' which over time takes their once 650W and after a year or so reduces it to 520W~500W aka Capacitor Aging.

    Great PSU Sizer -> http://www.thermaltake.outervision.com/
    Peak:
    100% CPU Utilization (TDP)
    100% System Load
    30%~35% for Capacitor Aging
  • 0 Hide
    zak_mckraken , January 11, 2012 2:40 PM
    @cumi2k4 and lordvj : We can only assume it does cause a thermal shock, since only the RAM retains power in S3 mode. The other unpowered components thus cool down during stand by mode, like a regular shutdown.

    Very informative article by the way!
  • 1 Hide
    TeraMedia , January 11, 2012 2:40 PM
    @palladin9479:

    Yeah, me too! I had significantly underbudgeted power for fans (9), ODD/HDDs (8) and USB devices (3), and was going nuts trying to figure out why the system was unstable at times. I thought I had a bad MoBo, or HDDs, or GPU, or ??!?!@#$? Now I know.
  • 1 Hide
    xenol , January 11, 2012 3:04 PM
    I'm kind of suspect about the ASUS power supply link. It tells me for my old system, I should get a 600W power supply but I ran a 500W on it for years without problem.
  • 0 Hide
    Onus , January 11, 2012 3:35 PM
    The statement about third party rebranders depends on who the OEM is. If Seasonic or Delta makes it (e.g. most Antec units), it is going to be a good PSU. Many Corsair and XFX are made by Seasonic too. Channel Well, Sirtec, and some others have some units that aren't so great.

    I found the article of some interest (and will revisit the sleep settings on my own system), but some of it was also years out of date. That's probably hard to avoid on a writing project of this magnitude.
  • 5 Hide
    chaz_music , January 11, 2012 3:38 PM
    Good collection of interesting PSU topics. I especially liked the ACPI information. I have several comments and suggestions to change in the article though. I work in the PSU industry and can shed some light on a few issues.

    On efficiency, most people leave out the fact that we tend to use air conditioning here in the USA a good part of the year. Here in the mid Atlantic, we tend to use A/C for about ~ 7 months annually. This adds a thermal penalty to any heat that you dump into the office/home air during those months. With most A/C systems, the cost to remove 1W of heat is an additional 0.5W of A/C power (50% overhead). Taking the above numbers and some rounding, I use an overhead rating of 30% total for any heat dumped into my home / office. So take your power loss numbers and multiply by 1.30 to get the total cost impact to your wallet. This also should be done for using CFL and LED lighting. They are not allowed to use A/C cost in their advertising, so the public does not get to see the true possible savings.

    There are several types of UPS systems that you should write about. The one you outlined is called a double conversion unit, which is always processing the power to give a clean regulated sine wave output. These are the least efficient and most expensive though. Double conversion is always taking the AC input, making DC, and using a PWM inverter to make regulated AC again for the output. Double conversion efficiencies are typically around 88-90% efficient, so this can impact you total system efficiency and operational costs. A cheaper UPS is the standby type, which allows the raw utility power to go straight to the load with some light duty surge clamping in between. When the input power voltage goes out of bounds, there is a switch over that is usually around 4-8msec which is faster than the PSU hold up time of 20msec. Since normal operation is straight pass through, the usual efficiency is close to 100% (minus the UPS internal power needs and charging). Note though that some UPS systems are crap and can use upwards to 100W just being plugged in.

    I did not follow your discussion on the alarm buzzer indicating overcharge, which should never happen in any UPS. Most modern UPS system implement a battery test to make sure that the battery capacity and internal resistance is able to hold up the load. If the battery fails, they set off the buzzer. In almost all UPS systems, a buzzer alarm is critical - something is wrong. Some UPS systems also monitor the ground feed continuity and will alarm if the input feed ground starts to float making the UPS and the load unsafe to touch.

    The UPS output waveforms are not all sine wave. Often the double conversion types are sine wave, adding to their cost. The standby UPS systems are usually step wave which is also called quasi-sine which is marketing term for step wave (to confuse the buyer). Most PC loads and monitors work fine with step wave (and are even more efficient on step wave!), although some PFC PSUs have problems. Magnetic loads can have real heartburn with step wave (motors, transformers) due to high losses and non-sinusoid voltage waveform effects.

    Ferroresonant transformers are good voltage regulators, but the way they work is very lossy. A good ferro will only run around 90% efficiency. If your load is attached to a ferro, you are adding another power loss in your system. In my opinion, you are better off spend a few more dollars and getting a UPS (which there are ferro types still out there also).

    There is no mention of oversizing your PSU also. Many HTPC and SOHO/home server needs are on 24/7 so power usage and efficiency are paramount to the cost of use / ownership. If you install an oversized PSU, you are taking a efficiency hit (for most brands) that increases your energy usage. The 80 Plus standards do not test below 20% load, so the efficiency of most PSU designs drop off quickly below 20% load. I have seen several that are below 50% with 10% loading. A good analogy on oversizing that I have used before is thinking about car engines. You cannot get a V8 car engine to run as efficiently as a 4 cylinder due to the physics (more friction/mass, etc.). That same effect occurs in a PSU. Larger magnetics, power devices, and other overhead lowers the efficiency at low power. proper sizing can save a good bit of money. Just don't get it too small, especially thinking about system start up (HDD spin up, fans, CPU local PSUs ramping up, etc.).

    You comment on thermal shock is great, but there are many other factors to consider in reliability. Spinning down any HDD and fan loads reduces bearing wear for those mechanical parts. But keeping the main motherboard PCB powered and some operation continuing also helps with reliability. The minor amount of heat that is generated helps keep the PCB dry (PCB material is hydroscopic!), which one major part of the high voltage area in a PSU failing after a long storage (like right after purchase) causing a DOA. And as others pointed out in the comments, allowing the system to go into a sleep state will also cause a cool down thermal shock. The biggest problem with thermal shock is that it break solder joints and helps break bond wires/connections in ICs. It also speeds up electrolytic cap leaking and shortens the life. Does anyone remember the motherboard cap failure from a few years ago?

    The absolute largest cause of computer failures is caused by ESD damage. The data from companies that keep statistics on this unanimously show this as a fact, but the PC enthusiast industry does not work to educate the end users of this well at all. In the electronics industry as a whole, ESD accounts for nearly 55-60% of all failures! This includes component suppliers, etc. So if you want a great topic for a future article, tackle ESD. It is real and it is very costly when ignored. Ever had a PC part that was DOA, i.e., that just "did not work at all" when powered up the first time and would not work at all? Good chance it was ESD.

    Thanks for the article.
  • 3 Hide
    george21546 , January 11, 2012 3:52 PM
    Buy a power meter kill-o-watt comes to mind. Cost 15-20 and will tell you amps, watts, power factor and cycles per second. Best of all it will measure watts over time so you can check how much your system is using in each of it's states. I like to oversize power supplies by 25% unless upgrades are planned.
  • 0 Hide
    chris maple , January 11, 2012 6:48 PM
    The low ends of the ranges shown are too high. Discrete video cards are available that use less than 10 watts, same for hard drives. Motherboards rarely exceed 25 watts.
    My system has an Intel Core I7-870, discrete video card, 2x2G RAM, 2 1Tbyte hard drives, an SSD and a DVD burner. It usually runs at 70 watts and has never exceeded 200 watts driven hard.
  • 0 Hide
    ethaniel , January 11, 2012 8:49 PM
    I thought it was only -5% tolerance for the -/+12v rail. Good data.
  • 0 Hide
    BlackHawk91 , January 11, 2012 10:22 PM
    Would enabling the S3 sleep mode interfere with OC settings and/or performance?
  • 0 Hide
    hardcore_gamer , January 12, 2012 12:12 PM
    palladin9479Holy cow. Thanks for that Asus PSU link. I now know what's causing my system instability.AMD Phenom II x4 980BE OC'd4 x 4GB DDR3-1600 memory2x NVidia GTX-580 SLI'd4x SATA ......


    You have a serious bottleneck there bro ;) . Time to upgrade the CPU.
  • 0 Hide
    g-unit1111 , January 12, 2012 10:50 PM
    palladin9479Holy cow. Thanks for that Asus PSU link. I now know what's causing my system instability.AMD Phenom II x4 980BE OC'd4 x 4GB DDR3-1600 memory2x NVidia GTX-580 SLI'd4x SATA HDD's1x SATA DVDRW7x FANs (Water cooled system)Comes to 1150W recommended. I have a Corsair HX-1000 1000W PSU.


    Yeah... that floored me as well, mine is 900 minimum.

    1 x AMD Phenom II X6 1055T OC'd
    2 x Geforce GTX 550TI
    4 x 4GB DDR3
    1 x SSD
    2 x HD
    2 x DVD-RW
    5 x CPU fans (double heat sink)

    I know now what's causing most of my heat issues is that I'm running an underpowered PSU (Corsair 750). I will definitely make this my next upgrade.

    And that thing about putting systems to sleep, I'll do that more often.
  • 0 Hide
    palladin9479 , January 12, 2012 11:57 PM
    Remember that ASUS link is calculating the approximate maximum power draw possible on your system. Basically with everything going full blast which doesn't happen too often.

    PSU's in general start to get stressed once their over 80% of their rated output. Prolonged stress can cause components to wear out much earlier then before. This is why a PSU may be fine for awhile but then start to have random issues six months or more after installation. I just didn't think I was burning that much juice, but now it seems I am.
  • 0 Hide
    A Bad Day , January 13, 2012 2:51 AM
    Just a question, is it worth watercooling a PSU? I know it would boost efficiency and allow it to put out higher watt than specified, but is it worth it?
Display more comments