Russian University Vows to Build 7nm Chipmaking Tools

A Russian institute is developing its own lithography scanner that could produce chips using 7nm-class fabrication technologies. The machine is under development, with the plan to build it by 2028. When it is ready, it should be more efficient than ASML's Twinscan NXT:2000i tool, whose development took over a decade. 

After Russia unleashed its bloody war against Ukraine on February 24, Taiwan was quick to ban shipments of advanced chips to the nation. The U.S., the U.K., and the E.U. then followed up with sanctions that effectively prohibit virtually all contract chipmakers with advanced fabs from working with Russian entities. In addition, companies like Arm cannot license their technologies to Russia-based chip designers. As a result, the Russian government rolled out a national program to develop the country's own 28nm-class fabrication technology by 2030, reverse engineer as many foreign chips as possible, and educate local talent to work on domestic chips. 

However, there is a problem with a 28nm-class production node by 2030. Russia's most advanced fab can produce chips using a 65nm fabrication technology. Meanwhile, American and European makers of fab tools cannot supply their equipment to Russia due to sanctions, so the country has to design and build domestic wafer production equipment if it wants to adopt a 28nm node. Essentially, what has taken companies like ASML and Applied Materials decades to develop and iterate has to be done in about eight years.  

The tool will be somewhat different from scanners produced by companies like ASML or Nikon. For example, IAP plans to use a >600W light source (total power, not intermediate focus power) with an 11.3nm exposure wavelength (EUV wavelength is 13.5nm), which will require considerably more sophisticated optics than exists today. Because the light source of the device will be relatively low power, it will make the tool more compact and easier to build. Yet, it also means that its production of the scanner will be considerably lower than that of modern deep ultraviolet (DUV) tools. That might not be a problem, according to IAP. 

Then, it took the market leader some nine years to deliver its 7nm and 5nm-capable Twinscan NXT:2000i DUV tool in 2018. TSMC used less advanced tools with multi-patterning for its first-generation N7 fabrication technology, but the timing of ASML’s introductions demonstrate how hard it is to transition from 65nm to 7nm. It took ASML 14 years to go from 65nm to 7nm. Now, IAP, which does not have any experience in chip production or ties with chipmakers, intends to build a 7nm-capable machine for volume production from scratch in about six years. While the plan does not sound feasible, it looks like IAP is full of enthusiasm.

Anton Shilov
Contributing Writer

Anton Shilov is a contributing writer at Tom’s Hardware. Over the past couple of decades, he has covered everything from CPUs and GPUs to supercomputers and from modern process technologies and latest fab tools to high-tech industry trends.